scholarly journals Effects of hedgerow enhancement as a net zero strategy on farmland biodiversity: a rapid review

2021 ◽  
Vol 3 ◽  
pp. 23
Author(s):  
Megan E. Tresise ◽  
Mark S. Reed ◽  
Pippa J. Chapman

In order to mitigate the effects of climate change, the UK government has set a target of achieving net zero greenhouse gas (GHG) emissions by 2050. Agricultural GHG emissions in 2017 were 45.6 million tonnes of carbon dioxide equivalent (CO2e; 10% of UK total GHG emissions). Farmland hedgerows are a carbon sink, storing carbon in the vegetation and soils beneath them, and thus increasing hedgerow length by 40% has been proposed in the UK to help meet net zero targets. However, the full impact of this expansion on farm biodiversity is yet to be evaluated in a net zero context. This paper critically synthesises the literature on the biodiversity implications of hedgerow planting and management on arable farms in the UK as a rapid review with policy recommendations. Eight peer-reviewed articles were reviewed, with the overall scientific evidence suggesting a positive influence of hedgerow management on farmland biodiversity, particularly coppicing and hedgelaying, although other boundary features, e.g. field margins and green lanes, may be additive to net zero hedgerow policy as they often supported higher abundances and richness of species. Only one paper found hedgerow age effects on biodiversity, with no significant effects found. Key policy implications are that further research is required, particularly on the effect of hedgerow age on biodiversity, as well as mammalian and avian responses to hedgerow planting and management, in order to fully evaluate hedgerow expansion impacts on biodiversity.

2013 ◽  
pp. 1072-1088
Author(s):  
Aurelian Mbzibain

The specific role of farmers and their actual or potential involvement with RE adoption and the wider community is potentially important but has not been addressed by research. This research carried out a postal survey of 2000 (response rate of 20.1%) farmers in the West Midlands region of the UK to investigate some of the factors affecting farmers’ intentions to invest in RE production and associated enterprises. Multivariate linear regressions showed that the farmer’s level of education, level of farm diversification, land tenancy status and farm business turnovers were the most important factors affecting intentions. It also emerged that perceived support of family, friends and associational networks was a significant positive influence on farmer’s investment intentions. The policy implications for these results are discussed.


Author(s):  
Shazia Farman Ali ◽  
Aaron Gillich

By 2050, the UK government plans to create ‘Net zero society’. 1 To meet this ambitious target, the deployment of low carbon technologies is an urgent priority. The low carbon heat recovery technologies such as heat recovery from sewage via heat pump can play an important role. It is based on recovering heat from the sewage that is added by the consumer, used and flushed in the sewer. This technology is currently successfully operating in many cities around the world. In the UK, there is also a rising interest to explore this technology after successful sewage heat recovery demonstration project at Borders College, Galashiels, Scotland. 2 However, further experimental research is needed to build the evidence base, replicate, and de-risk the concept elsewhere in the UK. The Home Energy 4 Tomorrow (HE4T) project at London South Bank University was created to address this evidence gap. This is the fourth article in the series of outputs on sewage heat recovery and presents some results using sewage data from the UK’s capital London. These data are scarce and provide useful information on the variation of flows and temperatures encountered in the sewers of the UK’s capital. Lastly, we discuss the recoverable heat potential along with policy implications for the UK heat strategy. Practical application This work focuses and accentuate that in order to meet climate change targets, substantial improvements can come by heat recovery from the raw (influent) and treated wastewater (effluent from wastewater treatment plant) that is still unexploited in the UK. The estimation presented indicates that there is much theoretical potential in the UK with significant opportunity for future energy and revenue retrieval along with GHGs emission reduction in the longer term to fulfil the ‘net zero’ objective. This work aims to raise awareness and seek support to promote pilot scale studies to help demonstrate technical and economic feasibility in the building industry.


2020 ◽  
Author(s):  
Wannes Hubau ◽  
Simon L. Lewis ◽  
Oliver L. Phillips ◽  
Hans Beeckman ◽  

<p>Structurally intact tropical forests sequestered ~1 Pg C yr<sup>-1</sup> over the 1990s and early 2000s, equivalent to ~15% of fossil fuel emissions. Climate-driven vegetation models typically predict that this carbon sink will continue for the remainder of the 21<sup>st</sup> century. However, recent plot inventories from Amazonia show a declining rate of carbon sequestration, potentially signaling an imminent end to the sink. Here we assess whether the African tropical forest sink is also declining.</p><p>Records from 244 multi-census plots across 11 countries reveal that the African tropical forest sink in aboveground live biomass has been stable for three decades, at 0.66 Mg C ha<sup>-1</sup> yr<sup>-1</sup>, from 1985-2015 (95% CI, 0.53-0.79). Thus, the carbon sink responses of Earth’s two largest expanses of tropical forest have diverged over recent decades. A statistical model including CO<sub>2</sub>, temperature, drought, and forest dynamics can account for the trends. Despite the past stability of the African carbon sink, our data and model show that very recently the sink has begun decreasing, and that it will continue to decline in the future.  This implies that the intact tropical forest carbon sink on both continents is set to end decades sooner than even the most extreme vegetation model estimates.</p><p>Published independent observations of inter-hemispheric atmospheric CO<sub>2</sub> concentration indicate increasing carbon uptake into the Northern hemisphere landmass, offsetting a weakening of the tropical forest sink, which reinforces our conclusion that the intact tropical forest carbon sink has already saturated. Nevertheless, continued on-the-ground monitoring of the world’s remaining intact tropical forests will be required to test our prediction that the intact tropical forest carbon sink will continue to decline. Our findings were recently published in Nature (March 2020) and have important policy implications: given tropical forests are likely to sequester less carbon in the future than Earth System Models predict, an earlier date to reach net zero anthropogenic greenhouse gas emissions will be required to meet any given commitment to limit the global heating of Earth.</p>


Author(s):  
Kathryn G. Logan ◽  
John D. Nelson ◽  
Astley  Hastings

Assessing greenhouse gas (GHG) emissions produced from electric vehicles (EVs) and hydrogen vehicles (HVs) requires understanding of the carbon intensity of electricity generation. Without the decarbonisation of electricity generation, environmental benefits of low emission vehicles (LEVs) will be diminished. The UK aims to produce net zero emissions by phasing out and banning the sale of new conventionally fuelled vehicles (CFVs) by 2035 in favour of LEVs. A comparison of the UK’s planned and future electricity production systems between 2020 and 2050 was conducted to analyse different vehicle-type mix scenarios: (1) 100% CFVs, (2 A/B) 100% EVs/HVs, (3 A/B) EVs/HVs integrated from 2035 and (4 A/B) EVs/HVs integrated from 2025 onward. This was conducted using four energy scenarios from the UK National Grid: two degrees, steady progression, consumer evolution and community renewables. This study does not consider the embedded carbon costs of the construction and decommissioning of vehicles. Results demonstrated that while the four electricity generation scenarios reduce the projected emissions they fail to achieve low emission targets. The two degree scenario produced the lowest level of emissions under each vehicle-type mix scenario. Technological improvements of CFVs are not enough to meet targets. Therefore, phasing out and banning the sale of new CFVs from 2025 (rather than 2035) would provide a stronger impetus to reduce transport emissions. Although these targets are possible, encouraging a change in transport modes from individual travel to public transport whilst simultaneously replacing buses and trains with electric or hydrogen alternatives would see a greater emission decrease.


2013 ◽  
Vol 2 (3) ◽  
pp. 43-58
Author(s):  
Aurelian Mbzibain

The specific role of farmers and their actual or potential involvement with RE adoption and the wider community is potentially important but has not been addressed by research. This research carried out a postal survey of 2000 (response rate of 20.1%) farmers in the West Midlands region of the UK to investigate some of the factors affecting farmers’ intentions to invest in RE production and associated enterprises. Multivariate linear regressions showed that the farmer’s level of education, level of farm diversification, land tenancy status and farm business turnovers were the most important factors affecting intentions. It also emerged that perceived support of family, friends and associational networks was a significant positive influence on farmer’s investment intentions. The policy implications for these results are discussed.


2017 ◽  
Vol 2 (1) ◽  
pp. 2-20 ◽  
Author(s):  
Chia-Hsun Chang ◽  
Po-Lin Lai

Purpose This paper aims to empirically identify crucial international logistics policy enablers and to examine their impacts on logistics performance using survey data collected from 169 responding firms in Taiwan and 109 responding firms in the UK including logistics companies, freight forwarders, shipping companies, agencies and airline companies. Design/methodology/approach A multiple regression analysis is used as a method to empirically validate the research model. Findings Results indicate the five most important logistics policy enablers according to Taiwanese logistics firms are information technology system, inland transport linkage, simplifying the customs clearance procedures, ports and maritime transport and having a policy to ensure efficient service operation and multiplicity of services. In contrast, for the UK logistics firms, the five most important logistics policy enablers are telecommunications, information technology system, avoidance of unnecessary regulation, inland transport linkage and ports and maritime transport. Results also indicate that logistics policy dimensions in terms of regulation, integration, infrastructure and logistics education have a positive influence on firms’ logistics service quality and efficiency. Originality/value Theoretical and policy implications from the research findings on logistics policy between these two countries are discussed in this paper.


Author(s):  
Donald Houston ◽  
Georgiana Varna ◽  
Iain Docherty

Abstract The concept of ‘inclusive growth’ (IG) is discussed in a political economy framework. The article reports comparative analysis of economic and planning policy documents from Scotland, England and the UK and findings from expert workshops held in Scotland, which identify four key policy areas for ‘inclusive growth’: skills, transport and housing for young people; city-regional governance; childcare; and place-making. These policies share with the ‘Foundational Economy’ an emphasis on everyday infrastructure and services, but add an emphasis on inter-generational justice and stress the importance of community empowerment as much as re-municipalisation. Factors enabling IG policy development include: the necessary political powers; a unifying political discourse and civic institutions; and inclusive governance and participatory democracy.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 351
Author(s):  
Bernardo Martin-Gorriz ◽  
Victoriano Martínez-Alvarez ◽  
José Francisco Maestre-Valero ◽  
Belén Gallego-Elvira

Curbing greenhouse gas (GHG) emissions to combat climate change is a major global challenge. Although irrigated agriculture consumes considerable energy that generates GHG emissions, the biomass produced also represents an important CO2 sink, which can counterbalance the emissions. The source of the water supply considerably influences the irrigation energy consumption and, consequently, the resulting carbon footprint. This study evaluates the potential impact on the carbon footprint of partially and fully replacing the conventional supply from Tagus–Segura water transfer (TSWT) with desalinated seawater (DSW) in the irrigation districts of the Segura River basin (south-eastern Spain). The results provide evidence that the crop GHG emissions depend largely on the water source and, consequently, its carbon footprint. In this sense, in the hypothetical scenario of the TSWT being completely replaced with DSW, GHG emissions may increase by up to 50% and the carbon balance could be reduced by 41%. However, even in this unfavourable situation, irrigated agriculture in the study area could still act as a CO2 sink with a negative total and specific carbon balance of −707,276 t CO2/year and −8.10 t CO2/ha-year, respectively. This study provides significant policy implications for understanding the water–energy–food nexus in water-scarce regions.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 212
Author(s):  
Jun-Lan Xiao ◽  
Feng Zeng ◽  
Qiu-Lan He ◽  
Yu-Xia Yao ◽  
Xiao Han ◽  
...  

Forests play a pivotal role in mitigating global warming as an important carbon sink. Recent global greening trends reflect a positive influence of elevated atmospheric CO2 on terrestrial carbon uptake. However, increasingly frequent and intense drought events endanger the carbon sequestration function of forests. This review integrates previous studies across scales to identify potential global trends in forest responses to drought and elevated CO2 as well as to identify data needs in this important research field. The inconsistent responses of ecosystem respiration to drought contributes to the change of forest net CO2 exchange, which depends on the balance of opposite effects of warming and water stress on respiration. Whether CO2 fertilization can offset the effects of drought remains controversial, however, we found a potential overestimation of global CO2 fertilization effects because of increasing water stress and other limitations such as light and nutrients (N, P) as well as the possibility of photosynthetic acclimation.


Sign in / Sign up

Export Citation Format

Share Document