scholarly journals Intranasal/subcutaneous prime-booster immunization with Outer Membrane Vesicles of Meningococci C elicits high-avidity, persistent antibodies against Meningococci B

2021 ◽  
Author(s):  
Amanda Portilho ◽  
Gabriela Lima ◽  
Gabrielle Lima ◽  
Elizabeth De Gaspari
2021 ◽  
Author(s):  
Amanda Izeli Portilho ◽  
Gabriela Trzewikowski de Lima ◽  
Elizabeth De Gaspari

Background: Invasive meningococcal disease (IMD), caused by Neisseria meningitidis, is a public health problem, associated with high levels of morbidity and mortality, capable of causing outbreaks or epidemics, but preventable through vaccination. In Brazil, the main serogroups isolated are C and B. The last epidemic occurred in the 80s, in Sao Paulo, because of a B:4:P1.15 strain. Methods: Adult Swiss mice were immunized with outer membrane vesicles (OMV) of N. meningitidis strain C:4:P1.15, adjuvanted by the cationic lipid dioctadecyldimethylammonium bromide in bilayer fragments (DDA-BF), administered via prime-booster (intranasal/subcutaneous) scheme. The humoral response was accessed by Immunoblotting and ELISA, using homologous immunization strain and a different serogroup but equal serosubtype strain, N. meningitidis B:4:P1.15. Results: Immunoblotting revealed the recognition of antigens associated with the molecular weight of Porin A and Opacity proteins, which are immunogenic but highly heterogeneous, and Tbp and NspA, which are more homogeneous between meningococci strains. ELISA results showed antibody production that persisted after 190 days and recognized the C:4:P1.15 and the B:4:P1.15 strains, with high avidity index. The adjuvanted group recognized antigens following the IN prime and had a higher avidity index against the heterologous strain. Conclusions: DDA-BF improved the humoral response, but the OMV alone induced high avidity index antibodies as well. Even though these are preliminary results, we see it as a promising approach for affordable meningococcal immunization in developing countries, at outbreak or epidemic situations.


2019 ◽  
Author(s):  
Jiajun Wang ◽  
Rémi Terrasse ◽  
Jayesh Arun Bafna ◽  
Lorraine Benier ◽  
Mathias Winterhalter

Multi-drug resistance in Gram-negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we extract, purify and reconstitute them into artificial planar membranes. To avoid this time-consuming procedure, here we show a robust approach using fusion of native outer membrane vesicles (OMV) into planar lipid bilayer which moreover allows also to some extend the characterization of membrane protein channels in their native environment. Two major membrane channels from <i>Escherichia coli</i>, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion revealed surprisingly single or only few channel activities. The asymmetry of the OMV´s translates after fusion into the lipid membrane with the LPS dominantly present at the side of OMV addition. Compared to conventional reconstitution methods, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution. The addition of Enrofloxacin on the LPS side yields somewhat higher association (<i>k<sub>on</sub></i>) and lower dissociation (<i>k<sub>off</sub></i>) rates compared to LPS-free reconstitution. We conclude that using outer membrane vesicles is a fast and easy approach for functional and structural studies of membrane channels in the native membrane.


2018 ◽  
Author(s):  
Sophie Brameyer ◽  
Laure Plener ◽  
Axel MMller ◽  
Andreas Klingl ◽  
Gerhard Wanner ◽  
...  

BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (2) ◽  
Author(s):  
James Berleman ◽  
Marcin Zemla ◽  
Jonathan Remis ◽  
Manfred Auer

2021 ◽  
Vol 22 (9) ◽  
pp. 4823
Author(s):  
María Fernanda González ◽  
Paula Díaz ◽  
Alejandra Sandoval-Bórquez ◽  
Daniela Herrera ◽  
Andrew F. G. Quest

Extracellular vesicles (EVs) are cell-derived vesicles important in intercellular communication that play an essential role in host-pathogen interactions, spreading pathogen-derived as well as host-derived molecules during infection. Pathogens can induce changes in the composition of EVs derived from the infected cells and use them to manipulate their microenvironment and, for instance, modulate innate and adaptive inflammatory immune responses, both in a stimulatory or suppressive manner. Gastric cancer is one of the leading causes of cancer-related deaths worldwide and infection with Helicobacter pylori (H. pylori) is considered the main risk factor for developing this disease, which is characterized by a strong inflammatory component. EVs released by host cells infected with H. pylori contribute significantly to inflammation, and in doing so promote the development of disease. Additionally, H. pylori liberates vesicles, called outer membrane vesicles (H. pylori-OMVs), which contribute to atrophia and cell transformation in the gastric epithelium. In this review, the participation of both EVs from cells infected with H. pylori and H. pylori-OMVs associated with the development of gastric cancer will be discussed. By deciphering which functions of these external vesicles during H. pylori infection benefit the host or the pathogen, novel treatment strategies may become available to prevent disease.


Sign in / Sign up

Export Citation Format

Share Document