Outer Membrane Vesicles Facilitate Trafficking of the Hydrophobic Signalling Molecule CAI-1 Between Vibrio harveyi Cells

2018 ◽  
Author(s):  
Sophie Brameyer ◽  
Laure Plener ◽  
Axel MMller ◽  
Andreas Klingl ◽  
Gerhard Wanner ◽  
...  
2018 ◽  
Vol 200 (15) ◽  
Author(s):  
Sophie Brameyer ◽  
Laure Plener ◽  
Axel Müller ◽  
Andreas Klingl ◽  
Gerhard Wanner ◽  
...  

ABSTRACTMany bacteria use extracellular signaling molecules to coordinate group behavior, a process referred to as quorum sensing (QS). However, some QS molecules are hydrophobic in character and are probably unable to diffuse across the bacterial cell envelope. How these molecules are disseminated between bacterial cells within a population is not yet fully understood. Here, we show that the marine pathogenVibrio harveyipackages the hydrophobic QS molecule CAI-1, a long-chain amino ketone, into outer membrane vesicles. Electron micrographs indicate that outer membrane vesicles of variable size are predominantly produced and released into the surroundings during the stationary phase ofV. harveyi, which correlates with the timing of CAI-1-dependent signaling. The large vesicles (diameter, <55 nm) can trigger a QS phenotype in CAI-1-nonproducingV. harveyiandVibrio choleraecells. Packaging of CAI-1 into outer membrane vesicles might stabilize the molecule in aqueous environments and facilitate its distribution over distances.IMPORTANCEFormation of membrane vesicles is ubiquitous among bacteria. These vesicles are involved in protein and DNA transfer and offer new approaches for vaccination. Gram-negative bacteria use hydrophobic signaling molecules, among others, for cell-cell communication; however, due to their hydrophobic character, it is unclear how these molecules are disseminated between bacterial cells. Here, we show that the marine pathogenVibrio harveyipackages one of its QS molecules, the long-chain ketone CAI-1, into outer membrane vesicles (OMVs). Isolated CAI-1-containing vesicles trigger a QS phenotype in CAI-1 nonproducingV. harveyiand also inVibrio choleraecells. Packaging of CAI-1 into OMVs not only solubilizes, stabilizes, and concentrates this class of molecules, but facilitate their distribution between bacteria that live in aqueous environments.


2019 ◽  
Author(s):  
Jiajun Wang ◽  
Rémi Terrasse ◽  
Jayesh Arun Bafna ◽  
Lorraine Benier ◽  
Mathias Winterhalter

Multi-drug resistance in Gram-negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we extract, purify and reconstitute them into artificial planar membranes. To avoid this time-consuming procedure, here we show a robust approach using fusion of native outer membrane vesicles (OMV) into planar lipid bilayer which moreover allows also to some extend the characterization of membrane protein channels in their native environment. Two major membrane channels from <i>Escherichia coli</i>, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion revealed surprisingly single or only few channel activities. The asymmetry of the OMV´s translates after fusion into the lipid membrane with the LPS dominantly present at the side of OMV addition. Compared to conventional reconstitution methods, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution. The addition of Enrofloxacin on the LPS side yields somewhat higher association (<i>k<sub>on</sub></i>) and lower dissociation (<i>k<sub>off</sub></i>) rates compared to LPS-free reconstitution. We conclude that using outer membrane vesicles is a fast and easy approach for functional and structural studies of membrane channels in the native membrane.


BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (2) ◽  
Author(s):  
James Berleman ◽  
Marcin Zemla ◽  
Jonathan Remis ◽  
Manfred Auer

2021 ◽  
Vol 22 (9) ◽  
pp. 4823
Author(s):  
María Fernanda González ◽  
Paula Díaz ◽  
Alejandra Sandoval-Bórquez ◽  
Daniela Herrera ◽  
Andrew F. G. Quest

Extracellular vesicles (EVs) are cell-derived vesicles important in intercellular communication that play an essential role in host-pathogen interactions, spreading pathogen-derived as well as host-derived molecules during infection. Pathogens can induce changes in the composition of EVs derived from the infected cells and use them to manipulate their microenvironment and, for instance, modulate innate and adaptive inflammatory immune responses, both in a stimulatory or suppressive manner. Gastric cancer is one of the leading causes of cancer-related deaths worldwide and infection with Helicobacter pylori (H. pylori) is considered the main risk factor for developing this disease, which is characterized by a strong inflammatory component. EVs released by host cells infected with H. pylori contribute significantly to inflammation, and in doing so promote the development of disease. Additionally, H. pylori liberates vesicles, called outer membrane vesicles (H. pylori-OMVs), which contribute to atrophia and cell transformation in the gastric epithelium. In this review, the participation of both EVs from cells infected with H. pylori and H. pylori-OMVs associated with the development of gastric cancer will be discussed. By deciphering which functions of these external vesicles during H. pylori infection benefit the host or the pathogen, novel treatment strategies may become available to prevent disease.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nayeong Kim ◽  
Hyo Jeong Kim ◽  
Man Hwan Oh ◽  
Se Yeon Kim ◽  
Mi Hyun Kim ◽  
...  

Abstract Background Zinc uptake-regulator (Zur)-regulated lipoprotein A (ZrlA) plays a role in bacterial fitness and overcoming antimicrobial exposure in Acinetobacter baumannii. This study further characterized the zrlA gene and its encoded protein and investigated the roles of the zrlA gene in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles (OMVs) in A. baumannii ATCC 17978. Results In silico and polymerase chain reaction analyses showed that the zrlA gene was conserved among A. baumannii strains with 97–100% sequence homology. Recombinant ZrlA protein exhibited a specific enzymatic activity of D-alanine-D-alanine carboxypeptidase. Wild-type A. baumannii exhibited more morphological heterogeneity than a ΔzrlA mutant strain during stationary phase. The ΔzrlA mutant strain was more susceptible to gentamicin than the wild-type strain. Sizes and protein profiles of OMVs were similar between the wild-type and ΔzrlA mutant strains, but the ΔzrlA mutant strain produced 9.7 times more OMV particles than the wild-type strain. OMVs from the ΔzrlA mutant were more cytotoxic in cultured epithelial cells than OMVs from the wild-type strain. Conclusions The present study demonstrated that A. baumannii ZrlA contributes to bacterial morphogenesis and antimicrobial resistance, but its deletion increases OMV production and OMV-mediated host cell cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document