scholarly journals Mathematical Modeling of Solar Photovoltaic Module to generate Maximum Power Using Matlab/Simulink

Author(s):  
Amusat Ramoni Olawale ◽  
Sulaimon Shodiya ◽  
Yakubu H Ngadda

Modeling is a basic tool of the real system simulation in translating the Mathematical results into real life. In this study, the Modeling and simulation of photovoltaic Module type PS-P310-36 were developed, and maximum power was obtained. The output I – V and P – V curves of the model were studied and analyzed under different irradiance (200 W/m2, 400 W/m, 600 W/m2, 800 W/m, and 1000 W/m2) at a constant temperature of 25oC. The model attained maximum power of 308, 251.6, 191.4, 129.2, and 64.74 W at 1000, 800, 600, 400, and 200 W/m2 irradiance, respectively. The model results agreed with the characteristics curves of the PV module of previous similar PV studies. The proposed model will serve as quick tools for designers in obtaining the maximum power of PV at distinct irradiance. However, for a more accurate design, more information is needed.

Author(s):  
I. M. Abdelqawee ◽  
Ayman Y. Yousef ◽  
Khaled M. Hasaneen ◽  
H. G. Hamed ◽  
Maged N. F. Nashed

<p> In this paper, the unknown parameters of the photovoltaic (PV) module are determined using Genetic Algorithm (GA) method. This algorithm based on minimizing the absolute difference between the maximum power obtained from module datasheet and the maximum power obtained from the mathematical model of the PV module, at different operating conditions. This method does not need to initial values, so these parameters of the PV module are easily obtained with high accuracy. To validate the proposed method, the results obtained from it are compared with the experimental results obtained from the PV module datasheet for different operating conditions. The results obtained from the proposed model are found to be very close compared to the results given in the datasheet of the PV module.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Abhijit V. Padgavhankar ◽  
Sharad W. Mohod

The electric power supplied by photovoltaic module depends on light intensity and temperature. It is necessary to control the operating point to draw the maximum power of photovoltaic module. This paper presents the design and implementation of digital power converters using Proteus software. Its aim is to enhance student’s learning for virtual system modeling and to simulate in software for PIC microcontroller along with the hardware design. The buck and boost converters are designed to interface with the renewable energy source that is PV module. PIC microcontroller is used as a digital controller, which senses the PV electric signal for maximum power using sensors and output voltage of the dc-dc converter and according to that switching pulse is generated for the switching of MOSFET. The implementation of proposed system is based on learning platform of Proteus virtual system modeling (VSM) and the experimental results are presented.


Author(s):  
D. V Tugay ◽  
S. I Korneliuk ◽  
O. O Shkurpela ◽  
V. S Akimov

Purpose. Creation of a detailed model of a solar photovoltaic station with a converter system based on a cascaded multi-level inverter with the MPPT (maximum power point tracker) function to investigate its operating modes in distributed power systems. Methodology. To carry out the research, the paper used the methods of system synthesis, mathematical and computer modeling to create photovoltaic station models and components; a physical experiment in obtaining thermal characteristics of the photovoltaic module Solarday SDM72360 W; modern power theories for synthesis of the vector control system of a multi-level inverter. Findings. the Matlab-model of solar photovoltaic station with transformerless 29-level cascade voltage inverter is synthesized. The model confirmed the serviceability and efficiency of the converter system and the power plant as a whole. An algorithm is proposed and an MPP tracker with volt-ampere characteristics of the photovoltaic module, which corresponds to the maximum power extraction, is synthesized on the basis of the algorithm. The algorithm was validated by the model for any solar radiation intensity. Originality. The total mathematical model of the photoelectric module, which accounts for its energy and heat characteristics, is obtained and can be used for simulating the operation of any computer model of the photoelectric converter under Matlab/Simulink/SimPowerSystems environment. Practical value. The model results indicate the prospects of industrial implementation of transformerless multi-level converter systems to be used in the structure of powerful solar photovoltaic stations.


Author(s):  
Kotchapong Sumanonta ◽  
Pasist Suwanapingkarl ◽  
Pisit Liutanakul

This article presents a novel model for the equivalent circuit of a photovoltaic module. This circuit consists of the following important parameters: a single diode, series resistance (Rs) and parallel resistance (Rp) that can be directly adjusted according to ambient temperature and the irradiance. The single diode in the circuit is directly related to the ideality factor (m), which represents the relationship between the materials and significant structures of PV module such as mono crystalline, multi crystalline and thin film technology.  Especially, the proposed model in this article is to present the simplified model that can calculate the results of I-V curves faster and more accurate than other methods of the previous models. This can show that the proposed models are more suitable for the practical application. In addition, the results of the proposed model are validated by the datasheet, the practical data in the laboratory (indoor test) and the onsite data (outdoor test). This ensures that the less than 0.1% absolute errors of the model can be accepted.


2019 ◽  
Vol 9 ◽  
pp. 59-69
Author(s):  
Alok Dhaundiyal ◽  
Divine Atsu

This paper presents the modeling and simulation of the characteristics and electrical performance of photovoltaic (PV) solar modules. Genetic coding is applied to obtain the optimized values of parameters within the constraint limit using the software MATLAB. A single diode model is proposed, considering the series and shunt resistances, to study the impact of solar irradiance and temperature on the power-voltage (P-V) and current-voltage (I-V) characteristics and predict the output of solar PV modules. The validation of the model under the standard test conditions (STC) and different values of temperature and insolation is performed, as well as an evaluation using experimentally obtained data from outdoor operating PV modules. The obtained results are also subjected to comply with the manufacturer’s data to ensure that the proposed model does not violate the prescribed tolerance range. The range of variation in current and voltage lies in the domain of 8.21 – 8.5 A and 22 – 23 V, respectively; while the predicted solutions for current and voltage vary from 8.28 – 8.68 A and 23.79 – 24.44 V, respectively. The measured experimental power of the PV module estimated to be 148 – 152 W is predicted from the mathematical model and the obtained values of simulated solution are in the domain of 149 – 157 W. The proposed scheme was found to be very effective at determining the influence of input factors on the modules, which is difficult to determine through experimental means.


2014 ◽  
Vol 550 ◽  
pp. 137-143 ◽  
Author(s):  
S. Narendiran ◽  
Sarat Kumar Sahoo

The paper discuss about the modelling and electrical characteristics of photovoltaic cell and its array type of construction in matlab-simulink environment at different insolation levels. The photovoltaic module is modelled using the diode electrical characteristic equation. The photovoltaic cell is analysed by voltage input and current input modules, The voltage and current input photovoltaic modules are simulated with different insolation values by varying the construction of PV modules. The results conclude that the current input PV module is well suited for applications were it shares same current when connected in series and voltage input PV module, where it shares same voltage when connected in parallel.


This paper compares the performance of buck-boost and zeta converter fed solar photovoltaic module. The study is carried out by considering a solar pv module, dc-dc converter, MPPT controller and a resistive load. The voltage gain, output voltage ripple and output current ripple of the two converters were compared. Maximum Power Point tracking is implemented and and ensures the extraction of maximum power from the solar panel. Here MPPT is achieved by using perturbation and observation method. Zeta converter topology provides a non inverted output voltage with increased voltage gain. Output has lesser voltage and current ripple compared to buck-boost converter. Photovoltaic module with Buck-Boost and Zeta converter are simulated using MATAB Simulink software and the result are shown.


Author(s):  
Siti Amely Jumaat ◽  
Adhwa Amsyar Syazwan Ab Majid ◽  
Mohd Noor Abdullah ◽  
Nur Hanis Radzi ◽  
Rohaiza Hamdan ◽  
...  

This project aims to model a solar Photovoltaic (PV) Module using MATLAB Simulink. In Renewable Energy (RE) field, many studies have been carried out to determine the level of efficiency and performance of a specific PV module. Therefore, this research will carry out the modeling of the 120W Monocrystalline Photovoltaic Module by Su-Kam Solar using MATLAB Simulink to determine the efficiency and performance. The input parameters that consists of Solar Irradiance (G) and Temperature (T) data will be collected at location 1.8635° N, 103.1089° E which is in Parit Raja, Batu Pahat, Johor. The results are shown in I-V curve and P-V curve and compared with the theory of I-V and P-V curve. Other than that, the PV module have different performance in different value of irradiance and temperature. Lastly, the PV Module is work efficiently and full performance at Standard Test Conditon (STC).


Author(s):  
Mohammed S. Ibbini ◽  
Abdullah H. Adawi

This paper presents the simulation of a dual maximum power point tracker (dual-MPPT) and attempt to get the global maximum power point GMPP under partial shading conditions for a solar photovoltaic module using MATLAB SIMSCAPE. Traditional single MPP trackers are less efficient than dual MPP trackers and have greater sensitivity to partial shading. By using dual MPP trackers, one can get several features such as the possibility of connecting two arrays with different string sizes or different solar azimuths or tilts within high efficiency. This paper focuses on making the photovoltaic system work at maximum possible power under partial shading condition by using dual MPP trackers to achieve the convergence toward the global maximum power point GMPP.


Sign in / Sign up

Export Citation Format

Share Document