scholarly journals Speech-in-Noise Test results of compensation claimants for noise induced hearing loss in Korean male workers: Words-in-Noise Test (WIN) and quick-Hearing-in-Noise Test (HINT)

Author(s):  
Ji Soo Kim ◽  
Joong Keun Kwon ◽  
Nam Jeong Kim ◽  
Ji Ho Lee
2005 ◽  
Vol 16 (08) ◽  
pp. 614-621 ◽  
Author(s):  
Patrick N. Plyler ◽  
Ashley Blair Hill ◽  
Timothy D. Trine

The present study investigated the effects of expansion time constants on the objective performance of 20 hearing instrument users fitted binaurally with digital in-the-ear products. Objective performance was evaluated in quiet using the Connected Speech Test and in noise using the Hearing in Noise Test. Results indicated that objective performance in quiet and in noise decreased as the expansion time constant increased. Furthermore, expansion time constants affected the objective performance of listeners with varying degrees of hearing loss in a similar manner.


2005 ◽  
Vol 14 (1) ◽  
pp. 80-85 ◽  
Author(s):  
Thomas G. Dolan ◽  
Dennis O’Loughlin

Purpose: To determine how amplified earmuffs affect the intelligibility of speech in noise for people with hearing loss, and to determine how various brands of amplified earmuffs compare in terms of speech intelligibility and electroacoustic response. Method: The Hearing in Noise Test (HINT) was used to measure the intelligibility of speech for 10 participants with hearing loss when they listened in a background of recorded industrial noise at 85 dBA. Participants listened with 3 different sets of amplified earmuffs (Peltor Tactical 7-S, Elvex COM 55, and Bilsom 707 Impact II), with a set of passive earmuffs (E-A-R Ultra 9000), and with ears unoccluded. Two measurements of sentence threshold were obtained under each of the 5 listening conditions. Gain was measured electroacoustically across a range of input levels and frequencies for each amplified earmuff. Results: Electroacoustic measurements indicated that each electronic earmuff amplified at low input levels and attenuated at high input levels. However, gain characteristics varied greatly across devices. HINT sentence thresholds were not significantly different across the 5 listening conditions or across the 2 trials. Conclusion: Results suggest that each type of earmuff can be used to reduce the noise exposure of people with hearing loss without compromising their ability to understand speech.


Author(s):  
Wessam Mostafa Essawy

<p class="abstract"><strong>Background:</strong> HINT sentence test is one of adaptive speech in noise tests. It has been used in many clinical applications such as recording of speech perception threshold using sentences material in quiet and in noise and verifying the benefit from hearing-aid amplification and cochlear implants, especially in noise. This study was designed to apply HINT to subjects with SNHL to get a normative data for this group.</p><p class="abstract"><strong>Methods:</strong> This study included 50 subjects with bilateral mild to moderate sensorineural hearing loss.  </p><p class="abstract"><strong>Results:</strong> In SNHL subjects, the mean of sSRT in quiet was 49.46 dB (A)±0.68 dB. The mean of S/N ratio at threshold was 7.69 S/N ratio ±0.68, -8.18±0.33 and -8.18±0.35 in the noise conditions 0°, 90° and 270° respectively.</p><p><strong>Conclusions:</strong> The statistical reliability and efficiency of the test suit it to practical applications especially in SNHL subjects. </p>


Author(s):  
Suhani Sharma ◽  
Rajesh Tripathy ◽  
Udit Saxena

Speech in noise tests that measure the perception of speech in presence of noise are now an important part of audiologic tests battery and hearing research as well. There are various tests available to estimate the perception of speech in presence of noise, for example, connected sentence test, hearing in noise test, words in noise, quick speech-in-noise test, bamford-kowal-bench speech-in-noise test, and listening in spatialized noise-sentences. All these tests are different in terms of target age, measure, procedure, speech material, noise, normative, etc. Because of the variety of tests available to estimate speech-in-noise abilities, audiologists often select tests based on their availability, ease to administer the test, time required in running the test, age of the patient, hearing status, type of hearing disorder and type of amplification device if using. A critical appraisal of these speech-in-noise tests is required for the evidence based selection and to be used in audiology clinics. In this article speech-in-noise tests were critically appraised for their conceptual model, measurement model, normatives, reliability, validity, responsiveness, item/instrument bias, respondent burden and administrative burden. Selection of a standard speech-in-noise test based on this critical appraisal will also allow an easy comparison of speech-in-noise ability of any hearing impaired individual or group across audiology clinics and research centers. This article also describes the survey which was done to grade the speech in noise tests on the various appraisal characteristics.


2013 ◽  
Vol 24 (04) ◽  
pp. 258-273 ◽  
Author(s):  
Ken W. Grant ◽  
Therese C. Walden

Background: Traditional audiometric measures, such as pure-tone thresholds or unaided word-recognition in quiet, appear to be of marginal use in predicting speech understanding by hearing-impaired (HI) individuals in background noise with or without amplification. Suprathreshold measures of auditory function (tolerance of noise, temporal and frequency resolution) appear to contribute more to success with amplification and may describe more effectively the distortion component of hearing. However, these measures are not typically measured clinically. When combined with measures of audibility, suprathreshold measures of auditory distortion may provide a much more complete understanding of speech deficits in noise by HI individuals. Purpose: The primary goal of this study was to investigate the relationship among measures of speech recognition in noise, frequency selectivity, temporal acuity, modulation masking release, and informational masking in adult and elderly patients with sensorineural hearing loss to determine whether peripheral distortion for suprathreshold sounds contributes to the varied outcomes experienced by patients with sensorineural hearing loss listening to speech in noise. Research Design: A correlational study. Study Sample: Twenty-seven patients with sensorineural hearing loss and four adults with normal hearing were enrolled in the study. Data Collection and Analysis: The data were collected in a sound attenuated test booth. For speech testing, subjects' verbal responses were scored by the experimenter and entered into a custom computer program. For frequency selectivity and temporal acuity measures, subject responses were recorded via a touch screen. Simple correlation, step-wise multiple linear regression analyses and a repeated analysis of variance were performed. Results: Results showed that the signal-to-noise ratio (SNR) loss could only be partially predicted by a listener's thresholds or audibility measures such as the Speech Intelligibility Index (SII). Correlations between SII and SNR loss were higher using the Hearing-in-Noise Test (HINT) than the Quick Speech-in-Noise test (QSIN) with the SII accounting for 71% of the variance in SNR loss for the HINT but only 49% for the QSIN. However, listener age and the addition of suprathreshold measures improved the prediction of SNR loss using the QSIN, accounting for nearly 71% of the variance. Conclusions: Two standard clinical speech-in-noise tests, QSIN and HINT, were used in this study to obtain a measure of SNR loss. When administered clinically, the QSIN appears to be less redundant with hearing thresholds than the HINT and is a better indicator of a patient's suprathreshold deficit and its impact on understanding speech in noise. Additional factors related to aging, spectral resolution, and, to a lesser extent, temporal resolution improved the ability to predict SNR loss measured with the QSIN. For the HINT, a listener's audibility and age were the only two significant factors. For both QSIN and HINT, roughly 25–30% of the variance in individual differences in SNR loss (i.e., the dB difference in SNR between an individual HI listener and a control group of NH listeners at a specified performance level, usually 50% word or sentence recognition) remained unexplained, suggesting the need for additional measures of suprathreshold acuity (e.g., sensitivity to temporal fine structure) or cognitive function (e.g., memory and attention) to further improve the ability to understand individual variability in SNR loss.


2011 ◽  
Vol 50 (11) ◽  
pp. 823-834 ◽  
Author(s):  
Monique C. J. Leensen ◽  
Jan A. P. M. de Laat ◽  
Wouter A. Dreschler

2020 ◽  
Vol 29 (3S) ◽  
pp. 564-576 ◽  
Author(s):  
Alessia Paglialonga ◽  
Edoardo Maria Polo ◽  
Marco Zanet ◽  
Giulia Rocco ◽  
Toon van Waterschoot ◽  
...  

Purpose The aim of this study was to develop and evaluate a novel, automated speech-in-noise test viable for widespread in situ and remote screening. Method Vowel–consonant–vowel sounds in a multiple-choice consonant discrimination task were used. Recordings from a professional male native English speaker were used. A novel adaptive staircase procedure was developed, based on the estimated intelligibility of stimuli rather than on theoretical binomial models. Test performance was assessed in a population of 26 young adults (YAs) with normal hearing and in 72 unscreened adults (UAs), including native and nonnative English listeners. Results The proposed test provided accurate estimates of the speech recognition threshold (SRT) compared to a conventional adaptive procedure. Consistent outcomes were observed in YAs in test/retest and in controlled/uncontrolled conditions and in UAs in native and nonnative listeners. The SRT increased with increasing age, hearing loss, and self-reported hearing handicap in UAs. Test duration was similar in YAs and UAs irrespective of age and hearing loss. The test–retest repeatability of SRTs was high (Pearson correlation coefficient = .84), and the pass/fail outcomes of the test were reliable in repeated measures (Cohen's κ = .8). The test was accurate in identifying ears with pure-tone thresholds > 25 dB HL (accuracy = 0.82). Conclusion This study demonstrated the viability of the proposed test in subjects of varying language in terms of accuracy, reliability, and short test time. Further research is needed to validate the test in a larger population across a wider range of languages and hearing loss and to identify optimal classification criteria for screening purposes.


Sign in / Sign up

Export Citation Format

Share Document