scholarly journals Calculadora para dimensionar sistemas fotovoltaicos interconectados

Author(s):  
Oscar Flores-Ramírez ◽  
Jimmy Jimenez-Aguas ◽  
Erick Eduardo Huesca-Lazcano ◽  
Gabriel Romero-Rodríguez

The generation of electrical energy by means of photovoltaic solar energy has become the most profitable today. The most important thing for an energy engineer are the calculations, for which an automated calculator in Excel has been designed, where the calculations of a dimensioning for a photovoltaic system interconnected to the electrical power network are summarized, including billing analyzes of the rate you are in and the DAC RATE (High Consumption Domestic), RATE 01, in order to save time and money, when calculating and studying economically, it is highly important to know this type of information Since people only sell projects without any knowledge and damage the reputation of the professional area, with this automated Excel calculator anyone with basic knowledge can manipulate it without any problem, giving an excellent service saving too much time on corrections where that costs money, the system itself graphically explains the generation of the SFVI, economic study and recovery time, the client will have a broad knowledge of what you pay for.

2018 ◽  
Vol 67 ◽  
pp. 04011
Author(s):  
Sunaryo Sunaryo ◽  
Adri Wirawan Ramadhani

Indonesia has more than 17,000 islands and has plenty of beautiful beaches and underwater spots which have great potential for maritime tourism. Tourism was ranked 3rd on Indonesia's foreign income and plays an important role for the country’s ecomony. Despite having potential advantages, the government has not yet maximized its efforts to develop the attractiveness of its maritime tourism. Beside the beautiful spots Indonesia is also blessed with all year long sun shine, which could be tapped as renewable and green energy as substitution to fossil fuel. Refer to these great advantages of natural resources the research was aimed to support the government’s program in developing its maritime tourism and to promote the use of green and renewable energy by designing a solar-powered tourism recreational boat which has 12 meters of length. The paper is focused on the design of solar energy and its electrical system, which includes conversion of solar energy to electrical energy and store it in the battery, the required electrical power is also predicted based on the appliances and equipment installed in the boat, the optimum attachment of solar panels on the boat structure is also calculated. All the methods and information we use are obtained from literature study, discussion with experts, and surveys to Jagur as solar-powered electric boat from Universitas Indonesia.


2019 ◽  
Vol 889 ◽  
pp. 526-532
Author(s):  
Thai Viet Dang ◽  
Si Thong Dinh ◽  
Xuan Toi Bui

Currently, the world has a lot of research and practical application of intelligent building systems integrated with intelligent power systems. Because Vietnam is a country with potential for solar energy, the integrator of solar energy is being strongly developed. However, the research result of the optimization of electrical energy used by the intelligent type solar integration is rare. This paper presents the design and structure of the module of intelligent control and monitoring via wireless network integrated with the automatic solar concentration system. The system allows easy connection and operation of all electrical power sources including the dispersal solar power to ensure the efficient and lower power consumption. In addition, the solar cell system is applied the Maximum Power Point Tracking technique (MPPT), which helps to stabilize and improve the power generation efficiency of the PV panels. The test results on the module showed absorption performance of automatic solar-cell flat plate systems is raised by 20-30% and power consumption in small households reduced approximately 30%.


2010 ◽  
Vol 21 (3) ◽  
pp. 2-8 ◽  
Author(s):  
Sosten Ziuku ◽  
Edson L. Meyer

A 3.8 kW rooftop photovoltaic generator has been installed on an energy efficient house built at the University of Fort Hare, Alice campus, South Africa. The system, located on the north facing roof, started generating electrical power in February 2009. In addition to providing electrical energy, the photovoltaic panels also act as the building roofing material. An instrumentation and data acquisition system was installed to record the indoor and outdoor ambient temperature, indoor and outdoor relative humidity, wind speed and direction, solar irradiance, electrical energy produced by the solar panels and the household energy consumption. This paper presents the initial results of the electrical performance of the building integrated photovoltaics (BIPV) generator and energy consumption patterns in the energy efficient house.


2012 ◽  
Vol 608-609 ◽  
pp. 97-113 ◽  
Author(s):  
José Rui Camargo ◽  
Jamir Machado da Silva ◽  
Ederaldo Godoy Junior ◽  
Renan Eduardo da Silva ◽  
Luiz Eduardo Nicolini do Patrocínio Nunes ◽  
...  

All photovoltaic panel heats up when exposed to sunlight and this heating reduces the electrical power output of the same. This work presents the use of this unwanted waste heat, converting it into thermal energy directly by means of the Seebeck effect, which is the direct conversion of thermal energy into electrical energy by means of an arrangement of semiconductor materials that when exposed to temperature gradients generate electric current. In this work emphasis was placed on the influence of temperature on generation processes involved. Thus, the theoretical evaluation, it presents the mathematical models of thermoelectric and photovoltaic systems by raising the curves of voltage, current and electric power generated, and analyses the influence of temperature in each model. To obtain the simulation curves it uses MATLAB ® 5.3, taking into account the parameters of thermoelectric modules and real photovoltaic cells. In practical evaluation, a prototype was assembled containing thermoelectric module attached to the bottom of a photovoltaic panel in order to use the heat energy absorbed by the panel. The data were stored and analyzed, where we observed the influence of temperature in both systems, validating the mathematical modeling. It is the applicability of the mathematical model given the results obtained with the prototype system.


2012 ◽  
Vol 4 (1) ◽  
pp. 14-19
Author(s):  
Valdi Rizki Yandri

Energy has important meaning in social and economics achievement to continously development and support to national economics activities. Energy consumption in Indonesia increases rapidly parallel with economics engagement and people growth. To supply energy requirement, renewable energy source should be developed. Renewable energy potency like solar energy hasn’t been used for big scale although Indonesia has big energy potency. Indonesia be included on tropical area which is exposed sun radiance almost year. It means solar energy has good prospects to be developed in Indonesia. Solar energy is one kind of energy which is gotten by converting sun calor energy to another type of energy. Solar energy can be used in form solar cell for electrical power plant. The utilization of solar cell can help people who lives on isolated area which is far from electrical network to use electrical energy.


Author(s):  
Apar Chitransh ◽  
◽  
Mr. Sachin Kumar ◽  

We know that sun is the only sources which is available free of cost in our environment for the PV module. when the sun strikes in to the PV cell it converts to the electrical energy. Now a days to fulfill the requirement of energy the solar energy plays a main role of that. But some time this solar energy is not sufficient to fulfill this requirement than some time we use the MPPT techniques which is increase the power generation and main advantage of this techniques is that this is work in any climate. The full form of MPPT is MAXIMUM POWER POINT TRACKER. It gets the maximum power from the available PV unit and it is not depending upon the any environmental conditions. In this paper we discuss in detail the several abilities that how they get the maximum power point and system convergence, efficiency and cost of implementation. In this paper we show that all type pf MPPT techniques.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Abhishek Saxena ◽  
Varun Goel

Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has been carried out to rate the various thermal energy storage commonly used in solar air heaters. During the investigations rock bed storages have been found to be low type thermal heat storage, while phase change materials have been found to be high heat thermal storages. Besides this, a few other heat storing materials have been studied and discussed for lower to higher ratings in terms of thermal performance purposely for solar heaters.


Electricity has become an inseparable part of our daily lives, its domain approach is boundless. Due to continuous use of energy resources (both renewable and non- renewable), it is our priority to conserve our resources. What is extracting power through PV cell? Solar energy is inexhaustible and can be extracted to electrical energy which eases the high consumption of non renewable resources. How to maximize the solar energy? Maximum energy can be obtained by some external aid in the form of MPPT. Why do we incorporate different techniques in a MPPT? To control the maintenance of operating point of PV array at its maximum peak Optimization of renewable energy has drastically increased over the past few decades and now capable of conservation at a higher level. Solar energy is prime example of renewable source. Not more than 50% solar irradiance is converted to solar energy without any external aid (MPPT). These techniques are mentioned in the literature work below and the respective algorithms as well.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Yasir M. Alfulayyih ◽  
Peiwen Li ◽  
Ammar Omar Gwesha

Abstract An algorithm and modeling are developed to make precise planning of year-round solar energy (SE) collection, storage, and redistribution to meet a decided demand of electrical power fully relying on solar energy. The model takes the past 10 years’ data of average and worst-case sky coverage (clouds fraction) condition of a location at a time interval (window) of per 6 min in every day to predict solar energy and electrical energy harvest. The electrical energy obtained from solar energy in sunny times must meet the instantaneous energy demand and also the need for energy storage for nighttime and overcast days, so that no single day will have a shortage of energy supply in the entire year and yearly cycles. The analysis can eventually determine a best starting date of operation, a least solar collection area, and a least energy storage capacity for cost-effectiveness of the system. The algorithm provides a fundamental tool for the design of a general renewable energy harvest and storage system for non-interrupted year-round power supply. As an example, the algorithm was applied for the authors’ local city, Tucson, Arizona of the U.S. for a steady power supply of 1 MW.


Author(s):  
Jose´ G. Pe´rez ◽  
Sandra Jime´nez ◽  
Salvador A. Iniesta ◽  
Jose´ L. Sosa-Sa´nchez ◽  
Javier Marti´nez

Electrical energy can be generated by using solar energy concentration. Normally, this type of systems requires a special device to achieve optimal heat dissipation. A no cover power Bi-Junction Transistor (BJT) has this advantage. An electrical power generator may be obtained if concentrated solar radiation is applied directly to the surface of a power transistor such as the MJ15023. The waste heat of the BJT is removed by a power thermoelectric module, and then a co-generation system may be obtained. This paper shows how this system is implemented and the results are evaluated to show the advantages of this type of generator.


Sign in / Sign up

Export Citation Format

Share Document