scholarly journals Extracting Maximum Power from PV Model using Fuzzy Logic Technique

Electricity has become an inseparable part of our daily lives, its domain approach is boundless. Due to continuous use of energy resources (both renewable and non- renewable), it is our priority to conserve our resources. What is extracting power through PV cell? Solar energy is inexhaustible and can be extracted to electrical energy which eases the high consumption of non renewable resources. How to maximize the solar energy? Maximum energy can be obtained by some external aid in the form of MPPT. Why do we incorporate different techniques in a MPPT? To control the maintenance of operating point of PV array at its maximum peak Optimization of renewable energy has drastically increased over the past few decades and now capable of conservation at a higher level. Solar energy is prime example of renewable source. Not more than 50% solar irradiance is converted to solar energy without any external aid (MPPT). These techniques are mentioned in the literature work below and the respective algorithms as well.

Author(s):  
Anant Gupta ◽  
Imran Tasgavkar ◽  
Pranav Murali ◽  
Utsav Jain ◽  
Gresha Bhatia

Energy has become a detrimental factor for survival and progress of anthropology. For the past decade, we have become totally dependent on  unlimited and continuous supply of  electrical energy. However, the generation of such huge amount of electrical energy is done from nonrenewable sources of energy like coal, oil gas etc. This way of producing electricity involves heavy consumption of non-conventional sources of energy and has given rise to the ominous problem of global warming. Thus, energy conservation has become an important concern all over the world. Switching to the use of renewable sources like solar, wind and hydro energy  has become a recent trend. This is the reason why our project, aims to maximise the use of solar energy by analyzing the present system such that it can be beneficial for the economy of our country. The analysing process is done using the smart meter, which captures the readings on an hourly basis.


Author(s):  
Oscar Flores-Ramírez ◽  
Jimmy Jimenez-Aguas ◽  
Erick Eduardo Huesca-Lazcano ◽  
Gabriel Romero-Rodríguez

The generation of electrical energy by means of photovoltaic solar energy has become the most profitable today. The most important thing for an energy engineer are the calculations, for which an automated calculator in Excel has been designed, where the calculations of a dimensioning for a photovoltaic system interconnected to the electrical power network are summarized, including billing analyzes of the rate you are in and the DAC RATE (High Consumption Domestic), RATE 01, in order to save time and money, when calculating and studying economically, it is highly important to know this type of information Since people only sell projects without any knowledge and damage the reputation of the professional area, with this automated Excel calculator anyone with basic knowledge can manipulate it without any problem, giving an excellent service saving too much time on corrections where that costs money, the system itself graphically explains the generation of the SFVI, economic study and recovery time, the client will have a broad knowledge of what you pay for.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 142
Author(s):  
Jianfei Tang ◽  
Tianle Liu ◽  
Sijia Miao ◽  
Yuljae Cho

In recent years, we have experienced extreme climate changes due to the global warming, continuously impacting and changing our daily lives. To build a sustainable environment and society, various energy technologies have been developed and introduced. Among them, energy harvesting, converting ambient environmental energy into electrical energy, has emerged as one of the promising technologies for a variety of energy applications. In particular, a photo (electro) catalytic water splitting system, coupled with emerging energy harvesting technology, has demonstrated high device performance, demonstrating its great social impact for the development of the new water splitting system. In this review article, we introduce and discuss in detail the emerging energy-harvesting technology for photo (electro) catalytic water splitting applications. The article includes fundamentals of photocatalytic and electrocatalytic water splitting and water splitting applications coupled with the emerging energy-harvesting technologies using piezoelectric, piezo-phototronic, pyroelectric, triboelectric, and photovoltaic effects. We comprehensively deal with different mechanisms in water splitting processes with respect to the energy harvesting processes and their effect on the water splitting systems. Lastly, new opportunities in energy harvesting-assisted water splitting are introduced together with future research directions that need to be investigated for further development of new types of water splitting systems.


Actuators ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Tri Cuong Do ◽  
Duc Giap Nguyen ◽  
Tri Dung Dang ◽  
Kyoung Kwan Ahn

In this paper, a novel design of an energy regeneration system was proposed for recovering as well as reusing potential energy in a boom cylinder. The proposed system included a hydraulic pump/motor and an electrical motor/generator. When the boom moved down, the energy regeneration components converted the hydraulic energy to electrical energy and stored in a battery. Then, the regenerated energy was reused at subsequent cycles. In addition, an energy management strategy has been designed based on discrete time-optimal control to guarantee position tracking performance and ensure component safety during the operation. To verify the effectiveness of the proposed system, a co-simulation (using MATLAB and AMESim) was carried out. Through the simulation results, the maximum energy regeneration efficiency could achieve up to 44%. Besides, the velocity and position of the boom cylinder achieved good performance with the proposed control strategy.


2020 ◽  
Vol 6 (3) ◽  
pp. 53-57
Author(s):  
A. T. Abdukadirov ◽  
◽  
A. A. Shodiev

This article describes the project of a device proposed by the authors for converting solar energy into electrical energy, as well as for accumulating and storing energy through molten salt. It describes the main details and principle of operation of this device and its special significance in the field of energy as a renewable energy source, which has the highest efficiency


2020 ◽  
Author(s):  
Sanaa Taha Alharahsheh ◽  
◽  
Feras Al Meer ◽  
Ahmed Aref ◽  
Gilla Camden

In an age of social transformation characterized by globalization, wireless communication, and ease of travel and migration, more and more people around the world are marrying across national boundaries. This has occurred worldwide with the Gulf Cooperation Council (GCC) as no exception to this trend. As with the rest of the GCC, Qatar has witnessed remarkable social changes because of the discovery of petroleum resources that have affected the daily lives of people within Qatar in myriad ways. This includes marriage patterns, whereby cross-national marriages (marriages with non-Qataris) have shown a marked increase during the past few years, reaching 21% of total Qatari marriages in 2015 compared with only 16.5% in 1985.


Author(s):  
Leezna Saleem ◽  
Imran Ahmad Siddiqui ◽  
Intikhab Ulfat

Pakistan is the world's sixth most populous country, currently facing the worst energy crisis. Although rich in renewable resources, Pakistan's energy system relies mainly on fossil fuels and imported energy for its energy needs. This study aims to use an analytical hierarchy pro-cess to prioritize six renewable technologies for Pakistan, with four criteria and thirteen subcriteria. The results indicate that solar power is particularly well suited for Pakistan, as it gained 42% priority weightage in the final aggregation. Wind energy is ranked second with a priority weight of 24%, followed by hydro 13%, biomass 9%, ocean 8% and geothermal en-ergy 3%. Solar and wind energies accounted for nearly 66% of the total weightage. This result highlighted the significance of economic criteria for the selection of renewable technologies in Pakistan, with around 43% priority weightage. Environmental criteria gained 19% whereas socio-political criteria registered 14% and technical criteria 23% priority weightage. During the potential assessment of the research, it was concluded that although renewable resource development has not been allocated sufficient attention in Pakistan in the past, if the correct decisions are taken regarding the exploitation of these resources, this can remedy the country's hazardous dependence on fossil fuel and imported energy.


Author(s):  
David M. Bierman ◽  
Andrej Lenert ◽  
Evelyn N. Wang

Solar thermophotovoltaic (STPV) devices provide conversion of solar energy to electrical energy through the use of an intermediate absorber/emitter module, which converts the broad solar spectrum to a tailored spectrum that is emitted towards a photovoltaic cell [1]. While the use of an absorber/emitter device could potentially overcome the Shockley-Queisser limit of photovoltaic conversion [2], it also increases the number of heat loss mechanisms. One of the most prohibitive aspects of STPV conversion is the thermal transfer efficiency, which is a measure of how well solar energy is delivered to the emitter. Although reported thermophotovoltaic efficiencies (thermal to electric) have exceeded 10% [3], [4], previously measured STPV conversion efficiencies are below 1% [5], [6], [7]. In this work, we present the design and characterization of a nanostructured absorber for use in a planar STPV device with a high emitter-to-absorber area ratio. We used a process for spatially-selective growth of vertically aligned multi-walled carbon nanotube (MWCNT) forests on highly reflective, smooth tungsten (W) surfaces. We implemented these MWCNT/W absorbers in a TPV system with a one-dimensional photonic crystal emitter, which was spectrally paired with a low bandgap PV cell. A high fidelity, system-level model of the radiative transfer in the device was experimentally validated and used to optimize the absorber surface geometry. For an operating temperature of approximately 1200 K, we experimentally demonstrated a 100% increase in overall STPV efficiency using a 4 to 1 emitter-to-absorber area ratio (relative to a 1 to 1 area ratio), due to improved thermal transfer efficiency. By further increasing the solar concentration incident on the absorber surface, increased emitter-to-absorber area ratios will improve both thermal transfer and overall efficiencies for these planar devices.


2012 ◽  
Vol 608-609 ◽  
pp. 65-69
Author(s):  
Xiao Fan Yang ◽  
Zhi Long Xu ◽  
Chao Li ◽  
Zhong Ming Huang

As the development trend of solar energy, which is a green way of energy utilization, photovoltaic power generation has been a research hotspot of solar energy utilization technologies. Using the concentrating and tracking technology to increase the illumination intensity, and obtain more electrical energy, that will reduce the cost of the photovoltaic power generation system sharply. A kind of steric and multilevel concentrator for photovoltaic generation is introduced in this paper, whose concentration ratio is 3. The operating factor of plane mirrors and performance price ratio of the system is increased for optimizing the condensation parameters and structure of the concentrator.


Sign in / Sign up

Export Citation Format

Share Document