scholarly journals SOLVENT OPTIMIZATION OF ELECTROSPUN POLY(ACRYLIC ACID) NANOFIBERS

2021 ◽  
Vol 2021 ◽  
pp. 178-184
Author(s):  
M. Geysoğlu ◽  
F.C. Çallıoğlu

In this study, it was investigated experimentally the influence of various solvents (distilled water and ethanol) on the solution properties, spinning performance, and fibre morphology of the electro spun Poly (acrylic acid) nanofibers. Firstly, polymer solutions were prepared at 5 wt % PAA with various solvent ratios of ethanol and distilled water. Then, solution properties such as viscosity, density, pH, conductivity, and surface tension were determined. The production of nanofiber samples was carried out by electrospinning under the optimum process parameters (voltage, distance between electrodes, feed rate, and atmospheric conditions). Finally, the morphological characterization of the nanofiber surface was carried out with SEM. According to the results, it was observed that conductivity, surface tension and the density of the solution increase as the ethanol ratio decreases. On the other hand, pH value increases as the ethanol ratio increases and, so, the acidic value of the solutions decreases. The viscosity increased until the ethanol/distilled water ratio was 50/50 and then decreased as the ethanol percentage decreased to under 50%. In addition, average fibre diameter decreases with ethanol ratio decreases. It is possible to say that solvent type affects solution properties, fibre morphology and spinning performance significantly. Generally, fine, uniform and bead free nanofibers could be electro spun and the PAA solution containing 70 wt % distilled water and 30 wt % ethanol was selected as the optimum in terms of fibre morphology, web quality and spinning performance.

2021 ◽  
Vol 2021 ◽  
pp. 185-192
Author(s):  
İ.Y. Mol ◽  
F.C. Çallioğlu

In this study, it is aimed to produce and characterize antibacterial polyurethane (PU)/Zinc oxide (ZnO) nanofibers by electrospinning method. Firstly, polymer solutions were prepared at various ZnO concentrations such as 0, 0.2, 0.4, 0.6, 0.8, 1. Then solution properties (conductivity, viscosity, surface tension) were determined and analysed the effects of ZnO concentration on the solution properties. PU/ZnO nanofibers produced via electrospinning under the optimum process parameters (voltage, distance between electrodes, feed rate and atmospheric conditions). Finally, the nanofibers were characterized in terms of fibre morphology, thermal stability, permeability and antibacterial activity using SEM-EDS, DSC-TGA, water vapour permeability and disk diffusion methods. According to the solution results; it was observed that conductivity and surface tension decrease significantly with ZnO addition. On the other hand, solution viscosity increases as the ZnO concentration increases. From the SEM images, it has been seen clearly that average fibre diameter increases with ZnO concentration and incorporation of ZnO particles to the fibre structure was verified by SEM-EDS. According to the thermal analyse result, nanofibers begin to degrade between 271.94 ºC and 298.73 ºC. In addition, water vapour permeability increases as the ZnO concentration increase. Lastly antibacterial activity against gram negative (E.coli) and gram positive (S. aureus) was determined with specific zone diameter.


2021 ◽  
Vol 2021 ◽  
pp. 193-199
Author(s):  
M. Geysoğlu ◽  
H.K. Güler ◽  
F.C. Çallıoğlu ◽  
İ.Y. Mol

This study aimed to achieve Polyvinylpyrrolidone (PVP) nanofiber production including paracetamol (PCT) by oil-in-water emulsion electrospinning. At first, emulsions were prepared at 14 wt % PVP with various PCT concentrations (0, 0.1, 0.3, 0.5, 0.7, 0.9 wt %). Then, solution properties such as viscosity, conductivity, and surface tension were determined. The production of nanofiber samples was carried out by emulsion electrospinning under the optimum process parameters (voltage, distance between electrodes, feed rate, and atmospheric conditions). Finally, the morphological and structural characterization of the nanofiber surface was carried out with SEM and FT-IR. According to the results of emulsion properties, although the change is not remarkable, it tends to increase the viscosity with an increase in PCT concentration. On the other hand, it was observed that surface tension did not change significantly with PCT concentration increasement and while the conductivity of emulsions decreased slightly. When the fibre structure was investigated, average fibre diameter and fibre diameter uniformity were not affected prominently by PCT concentration. From the SEM images, it is possible to say that generally fine, uniform and bead-free drug-loaded nanofibers were obtained. The finest (326 nm) and most uniform (1.03) nanofibers were achieved from the sample N4 which included 0.5 wt % PCT. Also, the FT-IR results verified that PVP and PCT exist in the nanofiber structure.


Soft Matter ◽  
2013 ◽  
Vol 9 (36) ◽  
pp. 8745 ◽  
Author(s):  
Petar D. Petrov ◽  
Krassimira Yoncheva ◽  
Pavlina Mokreva ◽  
Spiro Konstantinov ◽  
Juan M. Irache ◽  
...  

2008 ◽  
Vol 41 (1) ◽  
pp. 128-135 ◽  
Author(s):  
Hong Chen ◽  
Joshua D. Snyder ◽  
Yossef A. Elabd

Langmuir ◽  
1999 ◽  
Vol 15 (6) ◽  
pp. 2112-2119 ◽  
Author(s):  
Frédéric Millet ◽  
Michael Nedyalkov ◽  
Benjamin Renard ◽  
Patrick Perrin ◽  
Françoise Lafuma ◽  
...  

2007 ◽  
Vol 352 ◽  
pp. 81-84
Author(s):  
Yang Qiao Liu ◽  
Lian Gao

In this paper, the dispersing abilities of three polyelectrolytes, poly (acrylic acid), poly (acrylic acid-co-acrylate), and a four-member copolymer containing various anionic functional groups were tested for aqueous Al2O3 suspensions. The influence of the dispersants on the surface charge of the powder was evaluated by measuring the zeta potential in dilute Al2O3 suspensions. It was found that all the three dispersants shifted the isoelectric point to a lower pH value. Rheological measurements showed that the four-member dispersant decreased the viscosity in the widest pH range, which should be ascribed to the synergistic effect of different functional groups. The 58vol% concentrated Al2O3 slurry using the four-member dispersant was further consolidated using gel casting and was fully sintered at 1600oC.


1980 ◽  
Vol 258 (8) ◽  
pp. 928-931 ◽  
Author(s):  
Y. Ishimuro ◽  
K. Ueberreiter

2006 ◽  
Vol 58 (1) ◽  
pp. 243-252 ◽  
Author(s):  
Jelena Jovanovic ◽  
Borivoj Adnadjevic

Sign in / Sign up

Export Citation Format

Share Document