scholarly journals Monitoring the dynamics of seismicity within the Kemin-Chilik zone, generating M≥8 earthquakes

Author(s):  
Zhazgul Muratalieva ◽  
Aiymjan Omuralieva

The dynamics of seismic processes at the junction of the Tien Shan mountain building area and the Kazakh shield is presented in the paper. It is noted that the Tien Shan’s lithosphere over thrusts the Kazakh Shield’s lithosphere, and the Kazakh Shield’s lithosphere under thrusts beneath the Tien Shan’s lithosphere based on the seismic tomographic and seismotectonic data. Low-velocity heterogeneity is distinguished at the junction of these lithospheres, under where a low-velocity anomaly flow is assumed in the mantle. Marginal (active structures of the Ili basin, Zaili mountain range), and middle (active structures of the Kemin, Chilik basins, Kungei mountain range) subzones with characteristic seismicity and seismic regimes are formed here. Seismogenic zones are distinguished (from north to south): Predzaili, Kemin-Chilik, Predkungei. Powerful earthquakes with M>8 occur in the Kemin-Chilik seismogenic zone (about 250 km long and up to 25 km wide), and earthquakes with M=7-8 - in the Predza-ili and Predkungei seismogenic zones. The dynamics of the earthquakes’ sequence is predetermined by the dynamics of the hierarchy of faults and blocks in the junction zone. The sequence of earthquakes is expressed by the hierarchy of seismic cycles. Seismic activation period, a peak of seismic activation, a period of seismic activation’s decay, and seismic calm period are distinguished in every cycle. Strong earthquakes take place in a first-order cycle with a long period, significant and small earthquakes - in cycles with corresponding short periods. The seismicity level of the study area is determined by the trajectory of the seismic cycles’ association. Dynamic segmentation and dynamic sectorization, vectors of seismic activity directed from the east and west to the highly compressed central part of the region are noted in the spatial and temporal distribution of earthquakes at the junction of the Tien Shan and the Kazakh shield.

2020 ◽  
Author(s):  
Ran Cui ◽  
Yuanze Zhou

<p>As one of the most active intracontinental orogenic belts in the world, the Tien Shan orogenic belt originated in the Paleozoic and then experienced tectonic activities such as plate subduction and closure of the Paleo-Asian Ocean. Previous seismological and geodynamic studies have shown the observed the low-velocity anomaly (LVA) beneath the central Tien Shan at the uppermost mantle, which has a significant influence on the formation and modification of the crust and mantle lithosphere ( Lei et al, 2007). However, the distribution, morphology and physical property of the LVA are highly debatable.</p><p>We conduct 2-D forward waveform modeling based on spectral-element method (SEM) to investigate waveform distortions that were generated by the velocity contrast boundary of the LAV. The broadband P- and S- waves from three intermediate-depth earthquakes at Hindu Kush-Pamir were recorded by the Chinese Digital Seismograph Network (Zheng et al., 2010). We use these records to confirm the location, shape and velocity decrement of the LVA by fitting the observed records with the synthetics through SEM based on the 1D velocity structures (TSTB-B) of the central Tien Shan and northern Tarim basin (Gao et al., 2017). We find the LVA at 10~100 km beneath the eastern part of the central Tien Shan. And the northward under-thrusting of the Tarim Basin may trigger some mantle upwelling, contributing to the observed LVA.</p><p>Lei, J., Zhao, D. (2007). Teleseismic P-wave tomography and the upper mantle structure of the central Tien Shan orogenic belt.<em> Physics of the Earth and Planetary Interiors</em>, 162, 165-185, doi: 10.1016/j.pepi.200704010.</p><p>Zheng, X., Jiao, W., Zhang, C., et al. (2010). Short-Period Rayleigh-Wave Group Velocity Tomography through Ambient Noise Cross-Correlation in Xinjiang, Northwest China.<em> Bulletin of the Seismological Society of America</em>, 100(3): 1350-1355, doi: 10.1785/0120090225.</p><p>Gao, Y., Cui, Q., Zhou, Y. (2017). Seismic detection of P-wave velocity structure atop MTZ beneath the Central Tian Shan and Tarim Basin. <em>Chinese Journal of Geophysics ( in Chinese with English Abstract )</em>, 60 (1) : 98-111, doi: 10.6038 /cjg20170109.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 122
Author(s):  
Irina Medved ◽  
Elena Bataleva ◽  
Michael Buslov

This paper presents new results of detailed seismic tomography (ST) on the deep structure beneath the Middle Tien Shan to a depth of 60 km. For a better understanding of the detected heterogeneities, the obtained velocity models were compared with the results of magnetotelluric sounding (MTS) along the Kekemeren and Naryn profiles, running parallel to the 74 and 76 meridians, respectively. We found that in the study region the velocity characteristics and geoelectric properties correlate with each other. The high-velocity high-resistivity anomalies correspond to the parts of the Tarim and Kazakhstan-Junggar plates submerged under the Tien Shan. We revealed that the structure of the Middle Tien Shan crust is conditioned by the presence of the Central Tien Shan microcontinent. It manifests itself as two anomalies lying one below the other: the lower low-velocity low-resistivity anomaly, and the upper high-velocity high-resistivity anomaly. The fault zones, limiting the Central Tien Shan microcontinent, appear as low-velocity low-resistivity anomalies. The obtained features indicate the fluid saturation of the fault zones. According to the revealed features of the Central Tien Shan geological structure, it is assumed that the lower-crustal low-velocity layer can play a significant role in the delamination of the mantle part of the submerged plates.


2021 ◽  
Author(s):  
Chiara Civiero ◽  
Sergei Lebedev ◽  
Nicolas L. Celli

<p>Hot plumes rising from Earth’s deep mantle are thought to form broad plume heads beneath lithospheric plates. In continents, mantle plumes cause uplift, rifting and volcanism, often dispersed over surprisingly broad areas. Using seismic waveform tomography, we image <span>a star-shaped, low-velocity anomaly centered at Afar and composed of three narrow branches: beneath East Africa, beneath the Gulf of Aden, and beneath the Red Sea and West Arabia, extending north to Levant. We interpret this anomaly as the seismic expression of </span>interconnected corridors of hot, partially molten rock beneath the East Africa-Arabia region. The corridors underlie areas of uplift, rifting and volcanism and accommodate an integral, active plume head. Eruption ages and plate reconstructions indicate that it developed south-to-north, and tomography shows it being fed by three deep upwellings beneath Kenya, Afar and Levant. <span>These results demonstrate the complex feedbacks between the continental-lithosphere heterogeneity and plume-head evolution. </span>Star-shaped plume heads sprawling within thin-lithosphere valleys can account for the enigmatic dispersed volcanism in large igneous provinces and are likely to be a basic mechanism of plume-continent interaction.</p>


1976 ◽  
Vol 66 (2) ◽  
pp. 501-524
Author(s):  
Keiiti Aki ◽  
Anders Christoffersson ◽  
Eystein S. Husebye

abstract Using P-wave residuals for teleseismic events observed at the Montana Large Aperture Seismic Array (LASA), we have determined the three-dimensional seismic structure of the lithosphere under the array to a depth of 140 km. The root-mean-square velocity fluctuation was found to be at least 3.2 per cent which may be compared to estimate of ca. 2 per cent based on the Chernov random medium theory. The solutions are given by both the generalized inverse and stochastic inverse methods in order to demonstrate the relative merit of different inversion techniques. The most conspicuous feature of the lithosphere under LASA is a low-velocity anomaly in the central and northeast part of the array siting area with the N60°E trend and persisting from the upper crust to depths greater than 100 km. We interpret this low-velocity anomaly as a zone of weakness caused by faulting and shearing associated with the building of the Rocky Mountains.


1996 ◽  
Vol 39 (6) ◽  
Author(s):  
C. Chiarabba ◽  
A. Amato

In this paper we provide P-wave velocity images of the crust underneath the Apennines (Italy), focusing on the lower crustal structure and the Moho topography. We inverted P-wave arrival times of earthquakes which occurred from 1986 to 1993 within the Apenninic area. To overcome inversion instabilities due to noisy data (we used bulletin data) we decided to resolve a minimum number of velocity parameters, inverting for only two layers in the crust and one in the uppermost mantle underneath the Moho. A partial inversion of only 55% of the overall dataset yields velocity images similar to those obtained with the whole data set, indicating that the depicted tomograms are stable and fairly insensitive to the number of data used. We find a low-velocity anomaly in the lower crust extending underneath the whole Apenninic belt. This feature is segmented by a relative high-velocity zone in correspondence with the Ortona-Roccamonfina line, that separates the northern from the southern Apenninic arcs. The Moho has a variable depth in the study area, and is deeper (more than 37 km) in the Adriatic side of the Northern Apennines with respect to the Tyrrhenian side, where it is found in the depth interval 22-34 km.


2021 ◽  
Author(s):  
Sami El Khrepy ◽  
Ivan Koulakov ◽  
Nassir Al-Arifi ◽  
Mamdouh S. Alajmi ◽  
Ayman N. Qadrouh

<p><strong>Lithosphere extension, which plays an essential role in plate tectonics, occurs both in continents (as rift systems) and oceans (spreading along mid-oceanic ridges). The northern Red Sea area is a unique natural geodynamic laboratory, where the ongoing transition from continental rifting to oceanic spreading can be observed. Here, we analyze travel time data from a merged catalogue provided by the Egyptian and Saudi Arabian seismic networks to build a three-dimensional model of seismic velocities in the crust and uppermost mantle beneath the northern Red Sea and surroundings. The derived structures clearly reveal a high-velocity anomaly coinciding with the Red Sea basin and a narrow low-velocity anomaly centered along the rift axis. We interpret these structures as a transition of lithospheric extension from continental rifting to oceanic spreading. The transitional lithosphere is manifested by a dominantly positive seismic anomaly indicating the presence of a 50–70-km-thick and 200–300-km-wide cold lithosphere. Along the forming oceanic ridge axis, an elongated low-velocity anomaly marks a narrow localized nascent spreading zone that disrupts the transitional lithosphere. Along the eastern margins of the Red Sea, the lithosphere is disturbed by the lower-velocity anomalies coinciding with areas of basaltic magmatism.</strong></p>


Zootaxa ◽  
2020 ◽  
Vol 4790 (1) ◽  
pp. 198-200
Author(s):  
VITALY M. SPITSYN ◽  
GRIGORY S. POTAPOV

Seven Arctiine genera have recently been synonymized with the genus Chelis Rambur, 1866 using a comprehensive multi-locus phylogeny (Rönkä et al. 2016). The genus Chelis s. str. contains nine species, the ranges of which cover temperate and subtropical areas of Eurasia from the Iberian Peninsula to the Pacific Ocean coast (Dubatolov & de Vos 2010, Ortiz et al. 2016). Two species, i.e. Chelis ferghana Dubatolov, 1988 and C. strigulosa (Böttcher, 1905), are endemic to the Tien Shan Mountain Range. These taxa can be distinguished by morphological differences in the apical part of the valva. 


Sign in / Sign up

Export Citation Format

Share Document