scholarly journals The comparative study of the efficiency of natural gas combustion in the furnaces with hearth burners with the transfer of boilers from solid fuel to natural gas

2016 ◽  
Vol 1 ◽  
pp. 4-6
Author(s):  
Kuznetcov V.A. ◽  
SHurshakova E.V.

The article considers the questions of improvement of combustion processes in natural gas hearth burners with the transfer of boilers from solid fuel to natural gas. A device and a hearth burner. Describes the process of combustion of natural gas in the hearth burners. In this paper, the results of the study of improving the combustion efficiency (reducing losses from chemical underburning and reducing the coefficient of excess air) of natural gas in the furnace of the boiler DK-4-13 of the heating boiler company for the production of concrete products in the Vologda region, translated from the burning of solid fuel, the hearth burners equipped, in terms of open and closed burner embrasures.

Author(s):  
Yu. P. Yarmolchick

The combustion of hydrocarbon fuels in the chambers of heat generating plants is one of the main sources of pollutant emissions. Environmental standards and rules that limit emissions are becoming more stringent and their implementation requires the introduction of advanced technologies and equipment. The main device in combustion systems are blow burners, the design of which largely determines the level of emission. The article considers factors that intensify the formation of normalized pollutants, provides global chemical reactions, various types of mechanisms, and kinetic schemes. Based on the analysis of modern methods for reducing harmful emissions, the most effective design solutions for mixing devices, nozzles and systems for distributing the flow of fuel and air supplied to combustion are determined. A comparative analysis of the methods and conditions for determining the emission class of the burner device is carried out depending on the selected units of measure, the coefficient of excess air (oxygen concentration in flue gases), air humidity and the initial composition of natural gas using examples of EU and EAC standards. The methodology for calculating the emissions of nitrogen oxides depending on the measurement conditions is given. The conversion factors for the values of pollutant emissions from the accepted units in the EU (mg/(kW×h)) into the units indicated according to the EAC environmental rules (mg/m3) taking into account the respectively normalized coefficient of excess air are obtained. As a result of the calculations, the types of burners were determined by emission classes corresponding to the applicable environmental standards and rules in the Republic of Belarus, depending on the heat output of the boiler plants.


2019 ◽  
Vol 21 (3) ◽  
pp. 497-513 ◽  
Author(s):  
Jeremy Rochussen ◽  
Gordon McTaggart-Cowan ◽  
Patrick Kirchen

Natural gas is an attractive fuel for internal combustion engines in light of its potential for reduced greenhouse gas and particulate emissions, and significant reserves. To facilitate natural gas use in compression ignition engines, pilot-ignited direct-injection natural gas combustion uses a small pilot injection of diesel to ignite a more significant direct injection of natural gas. Compared to modern diesel combustion, this strategy is a promising technology for the reduction of CO2 emissions while retaining diesel-like efficiency without a significant CH4 emission penalty. To further develop this technology, investigation of in-cylinder combustion processes is needed to identify the primary fuel conversion processes. The objective of this work was to provide a framework of conceptual understanding by identifying key processes in a typical pilot-ignited direct-injection natural gas combustion event and characterizing their sensitivity to fuel injection parameters. A parametric sweep of injection pressure, natural gas injection duration, and relative timing of the diesel pilot and natural gas injections was performed in an optically accessible 2 L single-cylinder engine. Combined heat release rate and OH*-chemiluminescence reaction zone analysis was used to demarcate the transition from ignition reactions to primary natural gas heat release. Five distinct combustion processes were identified: (1) pilot auto-ignition; (2) natural gas ignition; (3) rapid, distributed partially premixed natural gas combustion; (4) non-premixed combustion; and (5) late-cycle oxidation. While natural gas ignition was found to be insensitive to injection pressure, it was strongly affected by the time between pilot and natural gas injections. Reducing the relative injection timing from +8° to −6° resulted in the primary natural gas heat release transitioning from non-premixed, to distributed partially premixed, to stratified premixed flame propagation as a result of increasing natural gas premixing. The presented measurements and analysis serve to refine an initial conceptual model of the combustion process and lay the groundwork for future, more focused studies of pilot-ignited, direct-injection natural gas combustion.


2019 ◽  
Vol 6 (2) ◽  
pp. 56-63
Author(s):  
L. D. Pylypiv ◽  
І. І. Maslanych

There are investigated the influence of operating pressures in the gas supply system on the level of such energy indicators as efficiency, gas flow and gas overrun by gas equipment in residential buildings. There is established a relationship between the values of operating pressures in the gas supply system and the gas consumption level of household appliances. The causes of insufficient pressure in the gas networks of settlements are analyzed in the article. There is also developed an algorithm for calculating the change in the efficiency of gas appliances depending on the operational parameters of the gas network. It has been found that the most efficient operation of gas appliances is observed at an overpressure at the inlet of gas appliances of about 1200 Pa.To ensure the required quality of natural gas combustion among consumers and minimize gas consumption there are justified the following measures in the article: coordinating a domestic regulatory framework for assessing the quality of natural gas with international norms and standards; improving the preparation of gas coming from local wells before supplying it to gas distribution networks; auditing low pressure gas pipelines and reconstructing areas affected by corrosion; ensuring standard gas pressure in the network for the normal operation of domestic gas appliances; stating quality indicators of natural gas combustion by gas sales organizations.


2002 ◽  
Vol 125 (1) ◽  
pp. 40-45 ◽  
Author(s):  
K. P. Vanoverberghe ◽  
E. V. Van den Bulck ◽  
M. J. Tummers ◽  
W. A. Hu¨bner

Five different flame states are identified in a compact combustion chamber that is fired by a 30 kW swirl-stabilized partially premixed natural gas burner working at atmospheric pressure. These flame states include a nozzle-attached tulip shaped flame, a nonattached torroidal-ring shaped flame (SSF) suitable for very low NOx emission in a gas turbine combustor and a Coanda flame (CSF) that clings to the bottom wall of the combustion chamber. Flame state transition is generated by changing the swirl number and by premixing the combustion air with 70% of the natural gas flow. The flame state transition pathways reveal strong hysteresis and bifurcation phenomena. The paper also presents major species concentrations, temperature and velocity profiles of the lifted flame state and the Coanda flame and discusses the mechanisms of flame transition and stabilization.


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Serena Romano ◽  
Roberto Meloni ◽  
Giovanni Riccio ◽  
Pier Carlo Nassini ◽  
Antonio Andreini

Abstract This paper addresses the impact of natural gas composition on both the operability and emissions of lean premixed gas turbine combustion system. This is an issue of growing interest due to the challenge for gas turbine manufacturers in developing fuel-flexible combustors capable of operating with variable fuel gases while producing very low emissions at the same time. Natural gas contains primarily methane (CH4) but also notable quantities of higher order hydrocarbons such as ethane (C2H6) can also be present. A deep understanding of natural gas combustion is important to obtain the highest combustion efficiency with minimal environmental impact. For this purpose, Large Eddy Simulations of an annular combustor sector equipped with a partially premixed burner are carried out for two different natural gas compositions with and without including the effect of flame strain rate and heat loss resulting in a more adequate description of flame shape, thermal field, and extinction phenomena. Promising results, in terms of NOx, compared against available experimental data, are obtained including these effects on the flame brush modeling, enhancing the fuel-dependency under nonadiabatic condition.


MTZ worldwide ◽  
2015 ◽  
Vol 76 (10) ◽  
pp. 30-35
Author(s):  
Bertold Hüchtebrock ◽  
José Geiger ◽  
Avnish Dhongde ◽  
Harsh Sankhla

Sign in / Sign up

Export Citation Format

Share Document