scholarly journals Deformation and Stress Analysis of the Electrostatic Separator Flat Screen in the SolidWorks Program

2020 ◽  
pp. 60-65
Author(s):  
В.В. Шмигель ◽  
А.С. Угловский ◽  
Н.Ю. Махаева

Рассмотрена проблема напряжённо-деформированного состояния решета электростатического сепаратора при ударной нагрузке с различными уровнями интенсивности импульса столкновения с применением метода конечных элементов. Проводилось изучение поперечного воздействия тела в виде точки массы или конечного тела на листовые структуры следующего типа: решето; решето, усиленное рёбрами; решето с повреждениями. Для решения обозначенной задачи использовался метод конечных элементов (FEM) в форме смещения. Этот метод был реализован в программном комплексе SolidWorks с приложением Simulation. Исследования были проведены для динамических нагрузок с материалами решёт: нержавеющая сталь и стеклотекстолит. Оценка результатов проводилась путём анализа эпюр напряжений и деформации модели. Проведённые расчёты показали, что учёт размеров ударного тела приводит к уменьшению значений деформации и эквивалентных напряжений. Для повышения эффективности системы очистки плоских решёт в электростатическом сепараторе в качестве материала решета можно применять как нержавеющую сталь, так и стеклотекстолит. The problem of stress-strain state of electrostatic separator screen at impact load with different levels of collision pulse intensity using finite element method is considered. The transverse effect of the body in the form of a point of mass or a final body on sheet structures of the following type was studied: screen, screen reinforced by ribs, screen with faults. To solve the designated problem, the finite element method (FEM) in the form of displacement was used. This method was implemented in the software complex SolidWorks with the Simulation application. Researches were conducted for dynamic loads with screen materials: stainless steel and fiber-glass plastic. Evaluation of the results was carried out by analyzing the stress and strain diagrams of the model. The conducted calculations have shown that taking into account the dimensions of the impact body leads to a decrease in deformation values and equivalent stresses. To increase the efficiency of the flat screen cleaning system in an electrostatic separator, both stainless steel and glass textile can be used as a screen material.

2021 ◽  
pp. 9-20
Author(s):  
A.V. Zaitsev ◽  
A.N. Izosimov

In the article, the modeling of the impact of hold-down forces on the accuracy of the shape of the workpiece using the finite element method was carried out. The operation of mechanical processing (turning cut) of a workpiece of the body of rotation type on a milling machine with basing and fixing along the inner cylindrical surface of the workpiece is considered. The study was conducted for four different types of machine retaining devices used on machines of this group. A consistent description and illustration of the method of modeling the process of the impact of hold-down forces on the workpiece is made for each type of the device under consideration. The force constraints and effects imposed on the model are described and illustrated, the parameters of the finite element grid used in modeling are presented, the displacement profiles obtained in the modeling process and the stages of modeling the machining process are described, and the values of the largest deviations from the shape of the workpiece are determined. The results of the modeling are presented: a qualitative picture of the shape errors obtained as a result of mechanical processing — the values of the largest deviation from the roundness and the largest deviation from the cross-section profile of the workpiece to be processed, as well as the shape of the cutting obtained in the cross-section of the workpiece for each type of the devices under consideration. On the basis of the obtained results, estimates of the degree of accuracy of the shape and the relative geometric accuracy provided by the considered devices were made in accordance with GOST 24643–81. The conclusion is made about the suitability of using the considered variants of machine retaining devices for the proposed technological process according to the criterion of the provided accuracy of the shape of the processed surface. English version of the article is available at URL: https://panor.ru/articles/modeling-the-influence-of-the-fastening-forces-on-the-accuracy-of-the-workpiece-shape-using-the-finite-element-method/65043.html


Author(s):  
Gustavo Simão Rodrigues ◽  
Hans Ingo Weber ◽  
Larissa Driemeier

There are many models of impact used to predict the post-impact conditions of a system and all of them are based on Hertz’s theory, dated from the nineteenth century, where the repulsive force is proportional to the deformation of the bodies under contact and may also be proportional to the rate of deformation. The objective of this work is to analyze the behavior of the bodies during impact using some contact models and compare the results to a Finite Element Method model. The main parameters which will be evaluated are the body velocities, the contact force and the deformation of the bodies. An advantage of using the Finite Element Method is the possibility to apply plastic deformation to the model according to material definition. In the present study, it will be used Johnson–Cook plasticity model where the parameters are obtained based on empirical tests of real materials. Thus, it is possible to compare the behavior of elastic and plastic numerical models with the finite element model and to verify how these models reproduce the impact between solid bodies.


Author(s):  
Ah-Young Park ◽  
Satish Chaparala ◽  
Seungbae Park

Through-silicon via (TSV) technology is expected to overcome the limitations of I/O density and helps in enhancing system performance of conventional flip chip packages. One of the challenges for producing reliable TSV packages is the stacking and joining of thin wafers or dies. In the case of the conventional solder interconnections, many reliability issues arise at the interface between solder and copper bump. As an alternative solution, Cu-Cu direct thermo-compression bonding (CuDB) is a possible option to enable three-dimension (3D) package integration. CuDB has several advantages over the solder based micro bump joining, such as reduction in soldering process steps, enabling higher interconnect density, enhanced thermal conductivity and decreased concerns about intermetallic compounds (IMC) formation. Critical issue of CuDB is bonding interface condition. After the bonding process, Cu-Cu direct bonding interface is obtained. However, several researchers have reported small voids at the bonded interface. These defects can act as an initial crack which may lead to eventual fracture of the interface. The fracture could happen due to the thermal expansion coefficient (CTE) mismatch between the substrate and the chip during the postbonding process, board level reflow or thermal cycling with large temperature changes. In this study, a quantitative assessment of the energy release rate has been made at the CuDB interface during temperature change finite element method (FEM). A parametric study is conducted to analyze the impact of the initial crack location and the material properties of surrounding materials. Finally, design recommendations are provided to minimize the probability of interfacial delamination in CuDB.


2019 ◽  
Vol 53 (3) ◽  
pp. 189-196
Author(s):  
Bhagyashree S. Jadhav ◽  
Ravindranath V. Krishnan ◽  
Vivek J. Patni ◽  
Girish R. Karandikar ◽  
Anita G. Karandikar ◽  
...  

Objective: To evaluate and compare the force and load deflection rate generated by differing unit displacement through 1 to 4 mm of springs that vary in design (Double Delta Closing Loop, Double Vertical T Crossed Closing Loop, Double Vertical Helical Closing Loop and Ricketts Maxillary Retractor), constituting wire materials (stainless steel and beta titanium), and wire dimensions (0.017" × 0.025" and 0.019" × 0.025"). Materials and methods: Computer-assisted design (CAD) model of the said loop springs was created and converted to the finite element method (FEM). The boundary conditions assigned were restraining anterior segment of the loops in all the 3 axes and displacement of the posterior segment progressively only along the x-axis in increments of 1, 2, 3, and 4 mm. Force and load deflection rate were calculated for each incremental displacement. Results: For all loop designs, force and load deflection rate increased with incremental displacement. Loop springs of beta titanium and 0.017" × 0.025" dimension showed lesser force and load deflection rate than those of stainless steel and 0.019" × 0.025", respectively. Ricketts Maxillary Retractor showed the least force and load deflection rate. Comparable force and load deflection values were found for 0.017" × 0.025" Double Vertical T Crossed Loop and 0.019" × 0.025" Double Vertical Helical Closing Loop. Conclusions: Variations in wire dimensions, materials, and designs have a profound effect on force and load deflection rate of the different loop springs studied.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Huifen Peng ◽  
Yujie Song ◽  
Ye Xia

The cohesive zone model (CZM) has been widely used for numerical simulations of interface crack growth. However, geometrical and material discontinuities decrease the accuracy and efficiency of the CZM when based on the conventional finite element method (CFEM). In order to promote the development of numerical simulation of interfacial crack growth, a new CZM, based on the wavelet finite element method (WFEM), is presented. Some fundamental issues regarding CZM of interface crack growth of double cantilever beam (DCB) testing were studied. The simulation results were compared with the experimental and simulation results of CFEM. It was found that the new CZM had higher accuracy and efficiency in the simulation of interface crack growth. At last, the impact of crack initiation length and elastic constants of material on interface crack growth was studied based on the new CZM. These results provided a basis for reasonable structure design of composite material in engineering.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Dongjian Zheng ◽  
Lin Cheng ◽  
Yanxin Xu

We use fuzzy finite element method (FEM) to analyze the impact of cold wave on face slab cracking of a concrete-faced rockfill dam (CFRD). The static response of dam and the temperature field of face slab are calculated using deterministic FEM since some observed and test data can be obtained. Some parameters of Goodman contact element between face slabs and cushion material are selected as fuzzy variables, and the fuzzy FEM is used to calculate fuzzy stress of face slab. The fuzzy FEM is implemented using vertex method based on the extension principle. Through the analysis of two selected calculation cases of cold wave, it is shown that the calculated cracking direction and cracking zone caused by thermal stress are similar to those of the observed cracks. This proves that the cold wave that caused swift air temperature drop is an important reason for the cracking of face slab. According to these analysis results, some cracking prevention measures are then proposed.


Sign in / Sign up

Export Citation Format

Share Document