scholarly journals The Change of Land Cover and Biocapacity of CO2 Gas Emission Absorption in Gresik Urban Area

2019 ◽  
Vol 1 (3) ◽  
pp. 3-14
Author(s):  
Achmad Ghozali ◽  
Fery Irfan Nurrahman ◽  
Eko Budi Santoso

Gresik urban area is dominated by industrial, housing, trade and services activities. The growth of activities contributes to the land use change from green open spaces into built-up areas. The impact of land use change influence the level of air pollution and CO2 gas emission in Gresik urban area. The previous study briefly shows that this urban area produces 50.37% of the total CO2 gas emissions. The production of CO2 gas emissions should be controlled to reduce the impact of climate change in urban areas such as increasing urban temperature, hydrological cycle anomaly, drought, land degradation and other social and environmental issues. The green open space can recycle the CO2 gas emissions and can increase the absorption capacity of the CO2 gas emissions (bio-capacity). The land cover change for built-up area potentially reduces the absorption of CO2 gas emissions in Gresik urban area. Therefore the identification of the land cover change on CO2 emission absorption becomes an objective of this study. The preliminary study can formulate the strategic steps in the development of Gresik urban area that supports urban greenery and adaptive effort to respond the climate change. The study is conducted in two steps. The first step is to analysis the land cover change based on the Landsat satellite imagery analysis. The second step is to measure the dynamic change of the region's ability(bio-capacity) to absorb CO2 emissions by using ecological footprint analysis. The results show that Gresik urban area has a high development of developed land to the North area, Manyar Sub District. The growth of the developed land is more converting the fishpond land. The green areas in this regiontend to be influenced by farming activities which also convert into fishpond land. Bio-capacity of CO2 gas emission absorption increases from 2003 of 3.548 gha to 5.656 gha but the comparison between bio-capacity of CO2 gas emission absorption and developed land shows the declining tendency in each year. In 2003, the comparison score is 1.59 gha/ha of developed land. In 2014, the score is declining into 1.48 gha/ha or developed land.

2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


2020 ◽  
Author(s):  
Hong Wei ◽  
Liyang Xiong ◽  
Guoan Tang ◽  
Josef Strobl ◽  
Kaikai Xue

<p><strong>Abstract</strong>: Land use/land cover change (LULC) in glacial affected areas are driven by climate change and human activities. Monitoring and simulation of the spatial and temporal land cover changes in this special region provide scientific basis in understanding the natural environment, helping to reveal the impact of climate change and human activities on LULC. In this study, the Tianshan Mountains (TSM), located in the hinterland of Eurasia, were selected as the study area to investigate the LULC of the glacial affected areas. The relationship between LULC, human intervention and climate change on a large spatial scale were also analyzed. The LULC of the TSM in China for the past 35 years were analyzed using a dynamical change model, a landscape pattern index, a centroid transfer model, and geoinformation TUPU based on the land use data of 1980, 1990, 2000, and 2015. Results show that the areas of cultivated and built-up lands immensely increased by 45.87% and 187%, respectively. Correspondingly, the areas of bare land and ice and snow cover decreased by 27% and 38%, respectively. The land use change in the TSM was characterized by different stages, and high conversion rate and intensity were obtained from 2000 to 2015. The landscape change was mainly reflected in terms of the significant increase in the number of patches and the simplification and regularization of patch shapes. The spatial connectivity of different land use types increased. The temperature and precipitation in the region show an increasing trend, and the melting rate of ice and snow cover significantly accelerated. This study can help to achieve a dynamic LULC model to investigate the interacting influences of climate change and human activities in glacial affected areas.</p>


2021 ◽  
Author(s):  
Peter Hoffmann ◽  
Vanessa Reinhart ◽  
Diana Rechid ◽  
Nathalie de Noblet-Ducoudré ◽  
Edouard L. Davin ◽  
...  

Abstract. Anthropogenic land-use and land cover change (LULCC) is a major driver of environmental changes. The biophysical impacts of these changes on the regional climate in Europe are currently extensively investigated within the WCRP CORDEX Flagship Pilot Study (FPS) LUCAS – "Land Use and Climate Across Scales" using an ensemble of different Regional Climate Models (RCMs) coupled with diverse Land Surface Models (LSMs). In order to investigate the impact of realistic LULCC on past and future climates, high-resolution datasets with observed LULCC and projected future LULCC scenarios are required as input for the RCM-LSM simulations. To account for these needs, we generated the LUCAS LUC Version 1.0 at 0.1° resolution for Europe Hoffmann et al. (2021b,c). The plant functional type distribution for the year 2015 (i.e. LANDMATE PFT dataset) is derived from the European Space Agency Climate Change Initiative Land Cover (ESA-CCI LC) dataset. Details about the conversion method based on a cross-walking procedure and the evaluation of the LANDMATE PFT dataset are given in the companion paper by Reinhart et al. (submitted). Subsequently, we applied the land-use change information from the Land-Use Harmonization 2 (LUH2) dataset, provided at 0.25° resolution as input for CMIP6 experiments, to derive realistic LULC distribution at high spatial resolution and at annual timesteps from 1950 to 2100. In order to convert land use and land management change information from LUH2 into changes in the PFT distribution, we developed a Land Use Translator (LUT) specific to the needs of RCMs. The annual PFT maps for Europe for the period 1950 to 2015 are derived from the historical LUH2 dataset by applying the LUT backward from 2015 to 1950. Historical changes in the forest type changes are considered using an additional European forest species dataset. The historical changes in the PFT distribution of LUCAS LUC follow closely the land use changes given by LUH2 but differ in some regions compared to remotely-sensed PFT time series. From 2016 onward, annual PFT maps for future land use change scenarios based on LUH2 are derived for different Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs) combinations used in the framework of the Coupled Modelling Intercomparison Project Phase 6 (CMIP6). The resulting LULCC maps can be applied as land use forcing to the next generation of RCM simulations for downscaling of CMIP6 results. The newly developed LUT is transferable to other CORDEX regions world-wide.


2006 ◽  
Vol 30 (6) ◽  
pp. 737-749 ◽  
Author(s):  
Haydee Salmun ◽  
Andrea Molod

The prediction of the impact of anthropogenic land use change on the climate system hinges on the ability to properly model the interaction between the heterogeneous land surface and the atmosphere in global climate models. This paper contains a review of techniques in general use for modeling this interaction in general circulation models (GCMs) that have been used to assess the impact of land use change on climate. The review includes a summary of GCM simulations of land cover change using these techniques, along with a description of the simulated physical mechanisms by which land cover change affects the climate. The vertical extent to which surface heterogeneities retain their individual character is an important consideration for the land-atmosphere coupling, and the description of a recently developed technique that improves this aspect of the coupling is presented. The differences in the simulated climate between this new technique and a technique in general use include the presence of a boundary layer feedback mechanism that is not present in simulations with the standard technique. We postulate that the new technique when implemented in a GCM has the potential to guide an improved understanding of the mechanisms by which anthropogenic land use change affects climate.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2009 ◽  
Vol 6 (4) ◽  
pp. 656-660
Author(s):  
Tomas Ayala-Silv ◽  
Garry Gordon ◽  
Robert Heath

2013 ◽  
Vol 39 (4) ◽  
pp. 59-70 ◽  
Author(s):  
Fredrick Ao Otieno ◽  
Olumuyiwa I Ojo ◽  
George M. Ochieng

Abstract Land cover change (LCC) is important to assess the land use/land cover changes with respect to the development activities like irrigation. The region selected for the study is Vaal Harts Irrigation Scheme (VHS) occupying an area of approximately 36, 325 hectares of irrigated land. The study was carried out using Land sat data of 1991, 2001, 2005 covering the area to assess the changes in land use/land cover for which supervised classification technique has been applied. The Normalized Difference Vegetation Index (NDVI) index was also done to assess vegetative change conditions during the period of investigation. By using the remote sensing images and with the support of GIS the spatial pattern of land use change of Vaal Harts Irrigation Scheme for 15 years was extracted and interpreted for the changes of scheme. Results showed that the spatial difference of land use change was obvious. The analysis reveals that 37.86% of additional land area has been brought under fallow land and thus less irrigation area (18.21%). There is an urgent need for management program to control the loss of irrigation land and therefore reclaim the damaged land in order to make the scheme more viable.


Sign in / Sign up

Export Citation Format

Share Document