scholarly journals Most adverse geometrical imperfections of steel spherical shells

2014 ◽  
Vol 13 (3) ◽  
pp. 219-226 ◽  
Author(s):  
Paweł Błażejewski ◽  
Jakub Marcinowski

Steel, spherical shells subjected to an external pressure are exposed to the loss of stability and such a phenomenon determines the global resistance of such shells. Unavoidable, geometric imperfections present is this class of shells affect significantly global resistance of shells. The imperfection form corresponding to the first and second buckling modes, analysed in previous works of authors, do not cover all possible and observed in reality imperfection modes. The specification and comparison of other imperfections encountered in practice will allow to identify the most adverse ones. Additionally to the imperfection forms also their amplitudes were analysed. Consequently the ranges in which considered imperfection form is in fact the most adverse were determined. On the basis of this knowledge, the designer can choose the most adverse imperfection mode for given quality fabrication class of the shell.

Author(s):  
G D Galletly ◽  
J Blachut

Welded hemispherical or spherical shells in practice have initial geometric imperfections in them that are random in nature. These imperfections determine the buckling resistance of a shell to external pressure but their magnitudes will not be known until after the shell has been built. If suitable simplified, but realistic, imperfection shapes can be found, then a reasonably accurate theoretical prediction of a spherical shell's buckling/collapse pressure should be possible at the design stage. The main aim of the present paper is to show that the test results obtained at the David Taylor Model Basin (DTMB) on 28 welded hemispherical shells (having diameters of 0.75 and 1.68 m) can be predicted quite well using such simplified shape imperfections. This was done in two ways. In the first, equations for determining the theoretical collapse pressures of externally pressurized imperfect spherical shells were utilized. The only imperfection parameter used in these equations is δ0, the amplitude of the inward radial deviation of the pole of the shell. Two values for δ0 were studied but the best overall agreement between test and theory was found using δ0 = 0.05 ✓ (Rt). This produced ratios of experimental to numerical collapse pressures in the range 0.98–1.30 (in most cases the test result was the higher). The second approach also used simplified imperfection shapes, but in conjunction with the shell buckling program BOSOR 5. The arc length of the imperfection was taken as simp = k ✓ (Rt) (with k = 3.0 or 3.5) and its amplitude as δ0 = 0.05√(Rt). Using this procedure on the 28 DTMB shells gave satisfactory agreement between the experimental and the computer predictions (in the range 0.92–1.20). These results are very encouraging. The foregoing method is, however, only a first step in the computerized buckling design of welded spherical shells and it needs to be checked against spherical shells having other values of R/t. In addition, more experimental information on the initial geometric imperfections in welded spherical shells (and how they vary with R/t) is desirable. A comparison is also given in the paper of the collapse pressures of spherical shells, as obtained from codes, with those predicted by computer analyses when the maximum shape deviations allowed by the codes are employed in the computer programs. The computed collapse pressures are frequently higher than the values given by the buckling strength curves in the codes. On the other hand, some amplitudes of imperfections studied in the paper give acceptable results. It would be helpful to designers if agreement could be reached on an imperfection shape (amplitude and arc length) that was generally acceptable. Residual stresses are not considered in this paper. They might be expected to decrease a spherical shell's buckling resistance to external pressure. However, experimentally, this does not always happen.


Author(s):  
G D Galletly

When perfect, externally pressurized complete circular toroidal shells buckle, the minimum buckling pressure pcr usually occurs in the axisymmetric n = 0 mode, with pcr for n = 2 being only slightly larger. In the present paper, the effects of axisymmetric initial geometric imperfections on reducing pcr for the perfect shell are investigated. Various types of imperfection are studied, i.e. localized flat spots, smooth dimples, sinusoids and buckling mode shapes. The principal geometry investigated was R/b = 10, b/t = 100, although other geometries were also considered. The maximum decrease in buckling resistance, Δ pcr, was found to be about 16 per cent at δ 0/t = 1 and it occurred with smooth dimples at the north (φ = 180°) and south (φ=0°) poles. This value of Δ pcr is not large. Circular toroidal shells thus do not appear to be very sensitive to axisymmetric initial geometric imperfections. The reductions in the buckling pressure of the above shell, arising because of initial imperfections having the shape of the n = 0 and the n = 2 buckling modes, were 12 and 9 per cent respectively for wo/t = 1. These decreases in the buckling resistance are smaller than that for the ‘two smooth dimple’ case mentioned above.


2001 ◽  
Vol 01 (01) ◽  
pp. 31-45 ◽  
Author(s):  
GERARD D. GALLETLY

This paper summarizes the results of numerical studies into the effects of initial geometric imperfections on the elastic buckling behaviour of steel circular and elliptic toroidal shells subjected to follower-type external pressure. The types of initial imperfection studied are (a) axisymmetric localized ones and (b) sinusoidal buckling modes. The principal localized imperfections studied are (i) circular increased-radius "flat spots" and (ii) smooth dimples. The buckling pressures pcr of circular toroidal shells were not very sensitive to initial imperfections. With elliptic toroids, whether the shell was sensitive to initial imperfections or not depended on the ratio k(≡ a/b) of major to minor radii of the section. The shells on the ascending part of the pcr versus k curve behaved like circular toroidal shells, i.e. they were not sensitive to initial imperfections. However, the behaviour of elliptic toroids on the descending part of the versus k curve was very different. The numerical results quoted in the paper are for limited ranges of the geometric parameters. It would be useful to extend these ranges, to explore the effects of plasticity and to conduct model tests on imperfect steel models to verify the conclusions of the numerical studies.


Author(s):  
Jan Sieber ◽  
John W. Hutchinson ◽  
J. Michael T. Thompson

Dynamic buckling is addressed for complete elastic spherical shells subject to a rapidly applied step in external pressure. Insights from the perspective of nonlinear dynamics reveal essential mathematical features of the buckling phenomena. To capture the strong buckling imperfection-sensitivity, initial geometric imperfections in the form of an axisymmetric dimple at each pole are introduced. Dynamic buckling under the step pressure is related to the quasi-static buckling pressure. Both loadings produce catastrophic collapse of the shell for conditions in which the pressure is prescribed. Damping plays an important role in dynamic buckling because of the time-dependent nonlinear interaction among modes, particularly the interaction between the spherically symmetric ‘breathing’ mode and the buckling mode. In general, there is not a unique step pressure threshold separating responses associated with buckling from those that do not buckle. Instead, there exists a cascade of buckling thresholds, dependent on the damping and level of imperfection, separating pressures for which buckling occurs from those for which it does not occur. For shells with small and moderately small imperfections, the dynamic step buckling pressure can be substantially below the quasi-static buckling pressure.


2019 ◽  
Vol 11 (09) ◽  
pp. 1950091 ◽  
Author(s):  
Yixiao Sun ◽  
Zhihai Xiang

Buckling analysis of spherical shells under external pressure is a crucial problem in mechanical and aerospace engineering. It is widely known that the buckling loads obtained by classical methods are much higher than experimental results. The main reason for this large discrepancy is customarily attributed to initial geometrical imperfections, and the impact of inhomogeneously distributed stresses during loading process is usually ignored. In order to investigate the effect of this ignored factor, the buckling loads of several spherical shells are analyzed by the geometrically nonlinear finite element method (FEM) based on the Willis-form equations, which explicitly contain the stress gradients at previous loading step. It can be shown that the buckling loads from the Willis-form FEM are about 10% lower than the values from classical FEM. This finding may give better understandings to the differences between theoretical and experimental results for nearly perfect spherical shells and may be helpful to obtain more accurate buckling loads for shells with initial geometrical imperfections.


1991 ◽  
Vol 35 (04) ◽  
pp. 352-355
Author(s):  
G.D. Galletiy ◽  
J. Blachut

The accurate prediction of the collapse pressures of thin, doubly curved elastic-plastic shells subjected to external pressure is important in many applications—not least to the occupants of submarines! As is well known, initial geometric imperfections can, in many shells, result in a substantial decrease in the shell's buckling resistance. In their paper, the authors (Boote and Mascia) discuss one imperfect hemispherical model which they analyzed with the help of two general purpose finite-element codes (MARC and ANSYS). The authors do not discuss the use of simpler programs for analyzing these shells [for example, BOSOR 5; Bushnell (1976)][Galletly etal (1987) or other work which has been published on the subject]. We have a number of comments on the subject paper, and these are given below.


2009 ◽  
Vol 31 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Dao Huy Bich

In the present paper the non-linear buckling analysis of functionally graded spherical shells subjected to external pressure is investigated. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. In the formulation of governing equations geometric non-linearity in all strain-displacement relations of the shell is considered. Using Bubnov-Galerkin's method to solve the problem an approximated analytical expression of non-linear buckling loads of functionally graded spherical shells is obtained, that allows easily to investigate stability behaviors of the shell.


Sign in / Sign up

Export Citation Format

Share Document