scholarly journals EVALUASI KINERJA STRUKTUR JEMBATAN PELENGKUNG AKIBAT BEBAN GEMPA DENGAN ANALISIS RIWAYAT WAKTU

2020 ◽  
Vol 6 (2) ◽  
pp. 151-156
Author(s):  
Widya Apriani ◽  
Reni Suryanita ◽  
Fadrizal Lubis

The behavior of the arch bridge structure has its own peculiarities in distributing loading. The curved shape of the structure allows the structure's own weight to be transferred to the foundation as the normal compressive force without bending. the load is transferred through the semicircular structure to the abutments on either side. The curved (semicircular) design will naturally shift the load received by the floor of the bridge vehicle towards the abutment which keeps both sides of the bridge from moving sideways. Earthquake is a dominant horizontal cyclic loading of a structure. The performance of bridge structures due to the effects of earthquake loading is an important aspect that needs to be taken into account in designing and evaluating the bridge structure. The method used in this study is time history analysis. This article aims to evaluate the performance of arch bridge structures due to earthquake loads by using time-history analysis method. The results of the structure performance show that. The performance of the bridge due to the loading of the Loma prieta earthquake is generated from the period scale that has been analyzed with the 10 second period of the first earthquake for each result. Based on the results of Midas analysis, the strongest location where the damage occurs is in the middle of the bridge road. At the coordinates of 19 the largest displacement is at joint 268 of 1.177169 mm and for U2 of 0.0194 mm and U3 of 31.763771 mm.

2012 ◽  
Vol 166-169 ◽  
pp. 2164-2170
Author(s):  
Xu Jie Sun ◽  
Hou Zhang ◽  
Da Gang Lu ◽  
Feng Lai Wang

The design process of the 100 m high reinforced concrete masonry building in China was firstly presented, deformation check calculation under earthquake action by mode-superposition response spectrum method and time-history analysis method were detailed and deformation under wind load was also checked. Then elastic-plastic deformation under earthquake action was checked by time-history analysis method and pushover analysis method with both under uniform load and reverse triangle load. The conclusion is construct 100 m high office building built in Fortification intensity 6 by reinforced concrete masonry is feasible. Then the building was redesigned as built in fortification 7, the same check was performed as that have been done in fortification 6, it is feasible too.


2013 ◽  
Vol 351-352 ◽  
pp. 849-853
Author(s):  
Lan Chen ◽  
De Long Lu ◽  
Xiao Gang Yin

Based on the vertical seismic information, the vertical seismic response spectrum was calculated by Matlab Lsim function. The seismic effect of Kiewitt-Lamella suspended-dome was measured by dynamic to static ratio. According to the EL-Centro seismic wave, it analyzed and compared the dynamic to static ratios which were calculated by the following four vertical seismic calculation methods respectively: the simplified method of specification, the mode-superposition response spectrum methods based on the horizontal earthquake affecting coefficients and the vertical acceleration response spectrum respectively, and the time history analysis method. Analysis shows that: For the seismic effect, the time history analysis method is larger than the other three methods, and the method based on the vertical acceleration response spectrum is closer to the time history analysis method. Owing to large difference of the four methods for seismic effect, various methods should be adopted to ensure the safety of vertical seismic design.


2011 ◽  
Vol 261-263 ◽  
pp. 1182-1190 ◽  
Author(s):  
Shi Guo Xiao ◽  
Wen Kai Feng

Near-field ground shock features are analyzed according to the seismological record of the May 12 Wenchuan earthquake made at the Wolong observation station. A numerical analysis model is established by taking the record as the input seismic load and a real high and steep rock slope on the bank of the Zipingpu Reservoir. The acceleration response and shear strain increment distribution features at different locations of the slope under horizontal seismic force are analyzed using Plaxis software. The moment when the widest plastic zone occurs for the slope is obtained by time history analysis. The corresponding stability factor of the slope at that moment is calculated using the strength reduction method (including shear strength and tensile strength). The above is the Time History Analysis–Strength Reduction Method presented in this article. In addition, the stability factor of the slope can be calculated using the pseudostatic method by taking the seismic force as the external load. This is the Time History Analysis–Pseudostatic method put forward in this paper. Analysis results demonstrate that, as far as the studied high and steep slope is concerned, at 31.89 s, the stability factor calculated with the Time History Analysis–Strength Reduction Method is 1.004, which is slightly larger than the 0.833 obtained using the Time History Analysis–Pseudostatic Method (Spencer method). Both results demonstrate that there is collapse and sliding failure of the localized rock mass at the top of the slope at that moment because of joint fracture. Field investigation after the earthquake further verified the calculation result, proving to a certain degree the rationality of the analysis method presented.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Qizhu Yang ◽  
Kejian Ma ◽  
Huagang Zhang ◽  
Yanhui Wei ◽  
Ze Xiang

PurposeThe purpose of this paper is to study the dynamic characteristics and seismic performance of the composite open-web grid floor structure.Design/methodology/approachStudied by using mode-superposition response spectrum method and time history analysis method.FindingsThe results show that the vertical mode-superposition response spectrum method is close to the time history analysis method. The floor has strong seismic performance, and the deflection and internal force are not large under vertical seism. The vertical seismic action suggested that 10% of the representative value of gravity load should be used to ensure the safety of the structure.Originality/valueIn the design, the mid-span section should be properly strengthened or the variable section design should be adopted.


2017 ◽  
Vol 12 (1) ◽  
pp. 120-126
Author(s):  
Jeena Dangol ◽  
Rajan Suwal

The entire Himalayan belt including Nepal area, because of its active tectonic movement, is seismically active causing high risk of earthquake in this region. It is important to evaluate the seismic performance of the structures including bridges to identify to what extent they would survive during earthquake. A reinforced concrete two hinged arch bridge located in Chobhar, Nepal has been selected for the research purpose. This paper presents the determination of seismic performance of a reinforced concrete arch bridge under different ground motions. The seismic input was taken as five different earthquake ground motion histories having different V/H peak ground acceleration ratio for time history analysis. Displacement capacity of the bridge was determined from pushover analysis. Time history analysis was conducted in two different steps: first only horizontal acceleration was applied and next vertical acceleration was applied in addition to horizontal ground motion. Comparisons were made between the responses of the bridge for these two cases. It was found that inclusion of vertical component of ground motion has negligible effect in variation of longitudinal displacement. However, there was remarkable effect in axial force variation. Significant effect in axial force variation in arch rib was observed as V/H ratio increased although the effect in longitudinal displacement with increase in V/H ratio was negligible. Moment demand also increased due to high axial force variation because of vertical ground motion.Journal of the Institute of Engineering, 2016, 12(1): 120-126


2013 ◽  
Vol 353-356 ◽  
pp. 2228-2232
Author(s):  
Xu Li ◽  
Sheng Ping Wu ◽  
Zhen Zheng Fang

The response of the long-span cable-stayed bridges under seismic load is complex. Reasonable methods is very important to analyze the seismic performance. In this paper, a practical project is taken as research background which is double pylon cable-stayed bridge with main span of 416m. Two artificial seismic waves and two seismic records were selected to analyze the seismic behaviors by the response spectrum method, time history analysis method and power spectrum method. The result shows that seismic responses of the girder and main tower are basically identical under the effect of artificial seismic wave. The response spectrum analysis results of them are between the other two methods under the effect of the natural seismic wave. For stay cable, time history analysis results has great difference compared with results of other two methods. Therefore, different methods should be choosed base on specific circumstances to analyse the earthquake response of this structure.


2014 ◽  
Vol 578-579 ◽  
pp. 877-881
Author(s):  
Qiang Liu

The dynamic analysis method and theory of double-tower connected structures is discussed in this paper .Then modal analysis、static and dynamic time-history analysis is researched with the FEM software ANSYS. Through the structure of monomer and comparative study of the structure in different locations, the basic rules of dynamic characteristics and the rules of layout corridor can be achieved. In addition, by symmetric and asymmetric conjoined comparative study, the basic choose rules of structure type can also be achieved.


Sign in / Sign up

Export Citation Format

Share Document