scholarly journals LEGUME LECTINS ACTIVATE SYMBIOTIC PROPERTIES OF SPECIFIC RHIZOBIA UNDER SYMBIOSIS FORMATION AND FUNCTIONING

2009 ◽  
Vol 9 ◽  
pp. 43-58
Author(s):  
O.V. Kyrychenko

The effect of pea and soybean lectins on the symbiotic properties of nodule bacteria Rhizobium leguminosarum bv. viciae 240б and Bradyrhizobium japonicum 634б during the formation and functioning of symbiosis with pea (Pisum sativum L.) and soybean (Glycine max L. Merr.) plants respectively was investigated. It was shown that incubation of homologous rhizobia with plant-host lectin had increased bacteria nodulation ability at seeds inoculation, nitrogen fixing activity of root nodules and symbiosis efficiency that had resulted in intensification of plants’ photosynthesis, positive changes of legumenous plants growth, formation of vegetative mass and harvest. The use of complex of complex compositions based on the legume lectins and homologous rhizobia for pre-sowing seeds treatment was shown to be perspective in order to increase seed productivity of legumenous plants.

2011 ◽  
Vol 24 (9) ◽  
pp. 1051-1060 ◽  
Author(s):  
Marc Libault ◽  
Manjula Govindarajulu ◽  
R. Howard Berg ◽  
Yee Tsuey Ong ◽  
Kari Puricelli ◽  
...  

The symbiotic interaction between legumes and soil bacteria (e.g., soybean [Glycine max L.] and Bradyrhizobium japonicum]) leads to the development of a new root organ, the nodule, where bacteria differentiate into bacteroids that fix atmospheric nitrogen for assimilation by the plant host. In exchange, the host plant provides a steady carbon supply to the bacteroids. This carbon can be stored within the bacteroids in the form of poly-3-hydroxybutyrate granules. The formation of this symbiosis requires communication between both partners to regulate the balance between nitrogen fixation and carbon utilization. In the present study, we describe the soybean gene GmNMNa that is specifically expressed during the infection of soybean cells by B. japonicum. GmNMNa encodes a protein of unknown function. The GmNMNa protein was localized to the nucleolus and also to the mitochondria. Silencing of GmNMNa expression resulted in reduced nodulation, a reduction in the number of bacteroids per infected cell in the nodule, and a clear reduction in the accumulation of poly-3-hydroxybutyrate in the bacteroids. Our results highlight the role of the soybean GmNMNa gene in regulating symbiotic bacterial infection, potentially through the regulation of the accumulation of carbon reserves.


1984 ◽  
Vol 62 (8) ◽  
pp. 1682-1686 ◽  
Author(s):  
Eulogio J. Bedmar ◽  
Donald A. Phillips

Data from 14 Pisum sativum L. cultivars establish that three pea genotypes, which were previously reported to affect net H2 evolution from root nodules in air and uptake hydrogenase activity of Rhizobium leguminosarum 128C53, are not unique. Two pea lines, 'JI1205' and 'Green Arrow,' produced very active uptake hydrogenase activity in strain 128C53, and essentially no H2 was evolved in air from root nodules capable of reducing 20 μmol C2H2 ∙ plan−1 ∙ h−1. Five other cultivars produced significantly lower uptake hydrogenase activities in the same bacterial strain and had much higher rates of net H2 evolution with similar C2H2-reduction capabilities. Parallel experiments with the same cultivars nodulated by R. leguminosarum 300, an organism with no convincing uptake hydrogenase activity in any pea line, showed that 'JI1205' and 'Green Arrow' had a significantly lower relative efficiency (RE) of N2 fixation (1 − (H2 evolved in air/C2H2 reduced)) than the other five cultivars. Developmental differences among the pea lines prevented any conclusion about the advantages or disadvantages of uptake hydrogenase activity for plant growth, but in general, cultivars with high uptake hydrogenase activity and low net H2 evolution grew more slowly than those evolving large amounts of H2.


2021 ◽  
Vol 17 (2) ◽  
pp. 123-129
Author(s):  
Ekaterina Kukol ◽  
Nadiya Vorobey ◽  
Petro Pukhtaievych ◽  
Sergii Kots

Purpose. Investigate the formation and functioning of symbiotic systems of soybeans with nodule bacteria by ino­culation of seeds with biological products based on fungicide-resistant strains of Bradyrhizobium japonicum PC07 and B78 with different rates of synthetic carmoisine colorant. Methods. Physiological, microbiological, gas chromatography, statistical. Results. It was found that as a result of inoculation of soybean [Glycine max (L.) Merr] variety ‘Almaz’ with microbial preparations based on B. japonicum PC07 and B78, with the addition of carmoisine (0.25 and 0.5 g per 200 g of the preparation), the amount and the weight of nodules formed on the roots during the growing season were at the level of the control plants or exceeded them. The greatest difference in indicators of quantity and weight of root nodules between plants of control and experimental variants is noted in a phase of full flowering at inoculation by both strains of rhizobia and addition to biological products of various norms of dye. Analysis of nitrogen-fixing activity (NFA) of the formed symbiotic systems showed the absence of a negative effect of the synthetic colorant on its level. When inoculated with soybean seeds B. japonicum PC07 in the phase of three true leaves, NFA was higher by 15.6–25.9% and in the budding-beginning of flowering stage by 7.4–29.5% compared with control plants with the addition of 0.25 and 0.5 g of carmoisine, respectively. Against the background of bacterization of soybean seeds by strain B78 before the phase of full flowering of plants the level of N2 assimilation by adding 0.25 g of carmoisine to the vermiculite preparation was at the level of the control plants. During the period of full flowering, this figure exceeded the indicators of control plants by 7.6 and 18.8% with the introduction of 0.25 and 0.5 g of the colorant. Conclusions. Carmoisine can be applied in the further study of the effectiveness of its use as a dye identifier for controlling the uniformity of marking of loose bacterial preparations on seeds by adding 0.25 and 0.5 g per 200 g of a biopreparation, since this did not show a negative impact on the formation and functioning of the soybean – Bradyrhizobium japonicum symbiotic systems.


2018 ◽  
Vol 8 (1) ◽  
pp. 460-465 ◽  
Author(s):  
O.V. Kyrychenko ◽  
Yu.O. Khomenko ◽  
S.Ya. Kots

<p><span lang="EN-US">The symbiotic properties of soybean nodule bacteria, root nodules forming (nodulation ability), nitrogen-fixing activity and efficiency under the influence of monosaccharides (0.01 M glucose and N-acetyl-D-glucosamine) on rhizobium culture were investigated in greenhouse with sandy soils. Nodulation activity and efficiency was estimated by the number and weight of the nodules formed on the roots of plants; by the formation of vegetative mass and by the yield of soybean seeds. Nitrogenase activity was determined by acetylene-reductase method. The control variant was inoculated by monoculture of soybean rhizobium. A significant increase in the degree of realization of the nodulation ability of rhizobium has been established under the influence of glucose-containing monosaccharides on the culture of microorganisms. Adding glucose to bacteria led to increase the average number of nodules per plant by 1.6, 2.2, and 1.7 times respectively in the phase of development of two true leaves, flowering and active bean formation in soybean. At the same time the weight of the root nodules was increased by 1.4, 2.3, and 1.4 times respectively as compared to control. The number of root nodules was increased by 2.2, 2.3, and 1.4 times as compared to the control while of glucosamine was used; while the </span><span lang="EN-US">weight of these nodules were 2.1 and 1.9 times higher than control in the phase of development of two true leaves and flowering, while in the phase of active beans formation it did not differ from control.</span><span lang="EN-US">T</span><span lang="UK">he functional activity</span><span lang="UK">of the soybean symbiotic </span><span lang="EN-US">system that was formed by</span><span lang="UK"> rhizobial culture </span><span lang="EN-US">and modified by </span><span lang="UK">glucose</span><span lang="EN-US">, had </span><span lang="UK">the highest positive effect, since the nitrogen</span><span lang="EN-US">-fixing</span><span lang="UK"> activity remained stable and </span><span lang="EN-US">was </span><span lang="UK">2.1 and 1.7 times</span><span lang="EN-US"> higher than control.</span><span lang="EN-US">Rhizobia, to suspension of which we added glucosamine, formed a symbiosis with activity that was 1.7 times higher than monoculture in the flowering phase, but later it was at the control level. We registered that inoculants on the basis of bacteria and glucose-containing monosaccharides activated seeds germination. The first true leaf of plants (up to 3.5 times higher than control), their above green mass (25-27% higher) and root system (10-16% higher) were actively formed while we used inoculant with rhizobia and glucose. Plants in the variant with the pre-sowing inoculation of seeds by bacteria and glucosamine almost did not differ from the control.</span><span lang="EN-US">The yield of soybean seeds significantly exceeded (up to 14%) the crop, produced by plants with inoculation by monoculture of rhizobia under the influence of glucose-containing monosaccharides. We indicated high efficiency of soybean-rhizobium symbiosis formed by nodule bacteria modified of glucose-containing monosaccharides. </span><span lang="UK">Thus, the use of glucose-containing mono</span><span lang="EN-US">saccherides </span><span lang="UK">as additional </span><span lang="EN-US">“green” and </span><span lang="UK">safe natural agents in complex inoculants with </span><span lang="EN-US">nodule </span><span lang="UK">soybean bacteria promotes a more complete implementation of the symbiotic and productive potential of soybean-rhizobial symbiosis compared with the use for seed</span><span lang="EN-US">s</span><span lang="UK"> pre-sowing treatment </span><span lang="EN-US">only </span><span lang="UK">of rhizobia monoculture in </span><span lang="EN-US">greenhouse </span><span lang="UK">with sandy </span><span lang="EN-US">culture</span><span lang="EN-US">.</span></p>


2019 ◽  
Vol 48 (4) ◽  
pp. 1223-1229
Author(s):  
Farood Shahzad ◽  
Muhammad Kamran Taj ◽  
Ferhat Abbas ◽  
Muhammad Shafee ◽  
Safed Ahmed Essote ◽  
...  

Rhizobia are the true bacteria that establish symbiotic relationship leading to the development of new root nodules. This study has been designed to evaluate the microbiological aspects of Rhizobium leguminosarum in target area. A total of 1000 (200 from each site) roots were collected from five different agriculture fields (Quetta, Pishin, Killa Abdulla, Kuchlak and Hanna Urak) and screened through different standard microbiological procedures. Results revealed that 665/1000 (66.5%) roots samples were positive for Rhizobium leguminosarum. The highest percentage was from Pishin 180/200 (18%) and Killa Abdullah 160/200 (16%). A remarkable growth of Rhizobium leguminosarum was noted at 28 to 30°C whereas, less growth was recorded at 24, 34 and 42°C. Similarly, Rhizobium leguminosarum showed growth at pH 5 to 10, but superlative pH values for the growth of Rhizobium leguminosarum were from 6 to 8 pH. The PCR reconfirmed 1300 bp band of 16S rRNA gene of Rhizobium leguminosarum. The organism was further applied as biofertilizer and showed promising results in subjected plants. Medicinal plants application showed that Rhizobium leguminosarum was sensitive to different plants. However, the effects of insecticides showed that Cypermethrin exhibited least zone of inhibition 10 and 11 mm, while Chlorpyrifos showed least zone of inhibition 14 and 17 mm by using disc and well method with (1: 16) dilution. These findings ensure the devastation of microbiota in rhizosphere with rational use of these pesticides that may result in adverse effects over crop productions in the region.


2011 ◽  
Vol 9 (2) ◽  
pp. 3-8
Author(s):  
◽  
Konstantin G Ptitsyn ◽  
Albert A Muldashev ◽  
Aleksei K Baymiev

The genetic diversity and phylogeny of rhizobia isolated from nodules of 9 wild-growing Lathyrus L. species (Fabaceae) growing in Republic Bashkortostan were studied. It is shown that for the given plants is characteristic that the big variety of heterogeneous strains of root nodule bacteria. Nevertheless, it is revealed that the majority of them in phylogenetics are closely related to Rhizobium leguminosarum. However, some plant species are found out also nodule bacteria which were considered earlier unusual for Lathyrus. So, L. vernus L. Bernh. and L. sylvestris L. are found out a root nodule bacteria close to R. tropici, L. palustris L. — Agrobacterium sp., and L. gmelinii Fritsch all isolated with us bacteria from root nodules by the sequence of genes of 16S рРНК have appeared are closely related to Phyllobacterium myrsinacearum. 


2009 ◽  
Vol 8 ◽  
pp. 52-61
Author(s):  
V.K. Datsenko ◽  
V.M. Mel’nyk ◽  
S.Ya. Kots ◽  
S.V. Omel’chuk

The influence of soybean seeds inoculation with Tn-5 mutants of Bradyrhizobium japonicum with polar symbiotic properties on symbiosis efficiency, photosynthetic intensity and activity of antioxidant enzymes in root nodules of host plant was studied. Most of the selected mutants were highly virulent, but as was shown there were no considerable correlation between studied parameters. The direct relationship of nitrogen fixation activity of roots nodules and photosynthesis intensity of host plant was established. The two types of dynamics of theses processes were determined with their maximum values in blooming and flowering stages, respectively.  


2007 ◽  
Vol 4 ◽  
pp. 51-61
Author(s):  
E.V. Nadkernichna ◽  
T.M. Kovalevska ◽  
D.V. Krutilo ◽  
V.P. Gorban ◽  
V.S. Vorobej

The results of efficiency studying of new active strains of lupine, peas and soybean nodule bacteria in field and manufacture experiments are given. It is shown, that strains Bradyrhizobium sp. (Lupinus) 5500/4, Rhizobium leguminosarum bv.viceae T2, Bradyrhizobium japonicum КНЮ provide stable increase of leguminous culture crop in comparison with standard strains and they can be used to bacterial preparations manufacture.


2020 ◽  
Vol 224 ◽  
pp. 04032
Author(s):  
Y V Laktionov ◽  
Y V Kosulnikov ◽  
V V Yachno ◽  
A P Kozhemyakov

The aim of our study was to determine the effect of fungicide formulation, brand of fungicide, its concentration in the solution, holding time and temperature regime of the solution on the number of survivors of nodule bacteria of soybean, lupine, peas and lentils in a solution. Bacterial suspensions of soybean nodule bacteria (Bradyrhizobium japonicum 634b), lupine (Bradyrhizobium lupini 367a), pea (Rhizobium leguminosarum 261b), and lentils (Rhizobium leguminosarum 712) were studied. Wetting powders Benomil (active substance benomil 500 g/kg, LLC “Soyuzagrohim”, Russia), Benorad (active substance benomil 500 g/kg, JSC “August”, Russia) and Fundazol (active substance benomil 500 g/l, LLC “Agro-Kemi”, Russia) and concentrates of suspension Maxim KS (active substance fludioxonil, 25 g/l; “Syngenta International AG”, Switzerland), Protect KS (active substance fludioxonil, 25 g/l; LLC “Agro Expert Group”, Russia), Protect Forte VSK (active substance fludioxonil, 40 g/l + flutriafol, 30 g/l; LLC “Agro Expert Group”, Russia) were studied as fungicidal disinfectants. Compatibility was determined after the preparation of tank solutions of biological products and fungicides, followed by an assessment of the percentage of surviving rhizobia depending on the brand of fungicide, its concentration (10 and 20%), the holding time of the solution (2, 4, 8 h) and the temperature regime of the solution (2-5, 16-18, 27 °C).


Sign in / Sign up

Export Citation Format

Share Document