scholarly journals A Dual Frequency Dielectric Resonator Antenna for Wireless Communication Applications

A dual frequency Dielectric Resonator antenna for wireless communication applications in the S and C bands with an operating frequency of 2.65GHz and 4.62GHz is presented. The patch is a dielectric material with a high dielectric constant value of 20. A 50Ω strip line is considered as feed and is coupled to the dielectric radiator via the rectangular slot etched in ground plane. The slot etched in ground plane is made so as to facilitate the power form the feed line to the radiator. The overall dimension of the antenna is 100mm×35mm×0.8mm. A dual frequency antenna has been proposed which will be operational at the frequencies of 2.65GHz and 4.62GHz with a gain of 4.42dB and 7.78dB respectively. Low cost FR4 material is been used as the laminate base for the antenna which will act as the dielectric material.

2018 ◽  
Vol 2 (3) ◽  
pp. 26-32
Author(s):  

In this research, study on mutual coupling of aperture coupled cylindrical DRA and its influence on return loss, radiation pattern including the directivity, gain and bandwidth was computed and illustrated. The DRA was excited by a micro strip line with aperture coupled slots where the slot locations were calculated using the characteristic of standing wave ratio over a short ended micro strips. Small dielectric resonator antenna was designed using high permittivity dielectric material with permittivity the substrate of 3.38. The diameter of the dielectric resonator is 12mm with the height of 4.2mm. The element spacing that been investigated for the effect of mutual coupling was at 0.5λ, 0.75λ and 1λ with maximum of four DRA been used. The final result shows the effect of mutual coupling is decreased with three DRA element with the gain measured at 5.948GHz frequency is about 8.619dB with high directivity measured at 11.4dBi. This shows that the proposed DRA with three 1λ spacing DRA elements exhibits an enhancement of the gain and directivity in comparison with a single pellet DRA. Hence, by increasing the level of isolation between the two identical DRAs to 1λ it actually helps electromagnetic interaction to attract and further increase the directivity and effective area.


2017 ◽  
Vol 9 (8) ◽  
pp. 1749-1756 ◽  
Author(s):  
Sounik Kiran Kumar Dash ◽  
Taimoor Khan ◽  
Binod Kumar Kanaujia

In this paper, a simple conical-shaped dielectric resonator antenna operating in HEM11δmode is presented for X-band wireless applications. A rectangular slot with a running microstrip line is used for excitation purpose. By placing a FR-4 based superstrate at 7 mm height from the ground FR-4 substrate and incorporating a set of modified ground plane on either side of the feed line, gain is improved by 42.85% and bandwidth by 68.92%, simultaneously. A prototype of designed antenna is fabricated and characterized. The measured results are found to be good in matching with the simulated ones.


Frequenz ◽  
2019 ◽  
Vol 73 (3-4) ◽  
pp. 109-116
Author(s):  
Nipun K. Mishra ◽  
Soma Das ◽  
Dinesh K. Vishwakarma

Abstract In present work a wide band and high gain cylindrical dielectric resonator antenna working in X-band has been designed and validated experimentally. First the bandwidth of the antenna has been enhanced by placing the thin dielectric layer between antenna and feed network. Next gain of the antenna has been increased by placing a layer of high dielectric material at nearly λ/2 distance as superstrate. The proposed design with impedance bandwidth of 3 GHz and gain nearly 11dBi could be used in satellite communication and other wideband wireless applications operating in X-band.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2694
Author(s):  
Abinash Gaya ◽  
Mohd Haizal Jamaluddin ◽  
Irfan Ali ◽  
Ayman A. Althuwayb

A novel method of feeding a dielectric resonator using a metallic circular patch antenna at millimeter wave frequency band is proposed here. A ceramic material based rectangular dielectric resonator antenna with permittivity 10 is placed over a rogers RT-Duroid based substrate with permittivity 2.2 and fed by a metallic circular patch via a cross slot aperture on the ground plane. The evolution study and analysis has been done using a rectangular slot and a cross slot aperture. The cross-slot aperture has enhanced the gain of the single element non-metallic dielectric resonator antenna from 6.38 dB from 8.04 dB. The Dielectric Resonator antenna (DRA) which is designed here has achieved gain of 8.04 dB with bandwidth 1.12 GHz (24.82–25.94 GHz) and radiation efficiency of 96% centered at 26 GHz as resonating frequency. The cross-slot which is done on the ground plane enhances the coupling to the Dielectric Resonator Antenna and achieves maximum power radiation along the broadside direction. The slot dimensions are further optimized to achieve the desired impedance match and is also compared with that of a single rectangular slot. The designed antenna can be used for the higher frequency bands of 5G from 24.25 GHz to 27.5 GHz. The mode excited here is characteristics mode of TE1Y1. The antenna designed here can be used for indoor small cell applications at millimeter wave frequency band of 5G. High gain and high efficiency make the DRA designed here more suitable for 5G indoor small cells. The results of return loss, input impedance match, gain, radiation pattern, and efficiency are shown in this paper.


2007 ◽  
Vol 17 (1) ◽  
pp. 1-30
Author(s):  
S.H. Zainud-Deen ◽  
E. El-Deen ◽  
H.A. Sharshar ◽  
M. A. Binyamin

Author(s):  
K. W. Leung ◽  
M. L. Poon ◽  
W. C. Wong ◽  
K. M. Luk ◽  
E. K. N. Yung

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. Kamran Saleem ◽  
Majeed A. S. Alkanhal ◽  
Abdel Fattah Sheta

A novel pattern reconfigurable antenna concept utilizing rectangular dielectric resonator antenna (DRA) placed over dielectric substrate backed by a ground plane is presented. A dual strip excitation scheme is utilized and both excitation strips are connected together by means of a 50 Ω microstrip feed network placed over the substrate. The four vertical metallic parasitic strips are placed at corner of DRA each having a corresponding ground pad to provide a short/open circuit between the parasitic strip and antenna ground plane, through which a shift of90°in antenna radiation pattern in elevation plane is achieved. A fractional bandwidth of approximately 40% at center frequency of 1.6 GHz is achieved. The DRA peak realized gain in whole frequency band of operation is found to be above 4 dB. The antenna configuration along with simulation and measured results are presented.


2016 ◽  
Vol 9 (3) ◽  
pp. 621-627 ◽  
Author(s):  
Idris Messaoudene ◽  
Tayeb A. Denidni ◽  
Abdelmadjid Benghalia

In this paper, a microstrip-fed U-shaped dielectric resonator antenna (DRA) is simulated, designed, and fabricated. This antenna, in its simple configuration, operates from 5.45 to 10.8 GHz. To enhance its impedance bandwidth, the ground plane is first modified, which leads to an extended bandwidth from 4 to 10.8 GHz. Then by inserting a rectangular metallic patch inside the U-shaped DRA, the bandwidth is increased more to achieve an operating band from 2.65 to 10.9 GHz. To validate these results, an experimental antenna prototype is fabricated and measured. The obtained measurement results show that the proposed antenna can provide an ultra-wide bandwidth and a symmetric bidirectional radiation patterns. With these features, the proposed antenna is suitable for ultra-wideband applications.


Sign in / Sign up

Export Citation Format

Share Document