scholarly journals Influence of Parameters on Micro Structural and Mechanical Properties of Aluminium Based Alloy (A356) with Friction Stir Welding

This study examines the influence of varied conditions of cooling and different rotations of tool on the accuracy of weld of aluminum samples taken out by friction stir welding process. The aim of this study was to check the effects on samples of aluminum alloy of A356 grades that were welded by friction stir welding under various conditions of cooling like cooling by water, cooling by air, cooling by nitrogen gas and cooling by lubrication oil at two varied rotating speed of tool at 900 revolution per minute and 1100 revolution per minute. These readings were being carried by experimental investigations. The influence of these different parameters on micro structural and mechanical properties of these joint are discussed. Cooling the different specimens by lubrication oil or liquid nitrogen showed to reduce the input heat in processing which reduce the improvement of grains in between the process. The reduction in input heat showed in decreasing the microscopic defects in the specimen found to gain in micro hardness and betterment of tensile properties. It was observed that best machining properties was found when the rotational speed is higher and no condition of cooling is used i.e. friction stir welding is applied in air. Also, the better findings found out from all the specimens when cooling by liquid nitrogen under rotating speed of tool at 1100 rpm as it represents higher tensile.

2012 ◽  
Vol 249-250 ◽  
pp. 295-302
Author(s):  
Qing Xia Wang ◽  
Jian Guo Yang ◽  
Ling Long Ding

Friction stir welding (FSW) technology requires a meticulous understanding of the process and consequent mechanical properties of the welds in order to be used in the production of high performance components. This paper deals with an experimental campaign aimed at the evaluation of the mechanical properties of AA6061-T6 friction stir welded joints. The joints are obtained by varying the welding parameters, namely, tool rotating speed and feed rate. The non-threaded tool is made of hot work die steel H13. The quality of the joints is evaluated in terms of both hardness and tensile strength. Moreover, for going a step further to study and control welding heat input in FSW process, a piezoelectric load cell is installed between the fixture table and the machine tool workbench in order to measure the welding forces in different directions.


Author(s):  
Behrouz Bagheri ◽  
Farzaneh Sharifi ◽  
Mahmoud Abbasi ◽  
Amin Abdollahzadeh

The Taguchi method was employed to find the optimum values of friction stir welding parameters including welding speed, rotating speed, and tilt angle for joining AA6061-T6 aluminum alloys. The combined influences of these parameters were entirely analyzed. Statistical outcomes were investigated by the study of variances and signal-to-noise ratios. A Coupled Eulerian and Lagrangian technique is implemented to simulate and verify the optimal parameters during the friction stir welding. To verify results, a comparison between the welding process under optimized parameters with experimental and non-optimized parameters was simulated for the friction stir welding process. The material flow, strain rate, thermal behaviors, and mechanical properties of samples fabricated with optimal welding parameters are higher than those produced from the non-optimal parameters. It was also concluded that the grain size of the stir zone under optimal welding parameters (6–8 µm) is finer than that of non-optimal welding parameters (11–13 µm). Low uniform distribution of material element and coarse microstructure were some of the results of welding with non-optimized parameters. Based on residual stress analysis, the application of optimal joining conditions can decrease the peak tensile residual stress by about 38.3%. The much desirable results obtained in terms of microstructure and mechanical properties could be of great significance to the welding industry.


2021 ◽  
Vol 880 ◽  
pp. 57-62
Author(s):  
Normariah Che Maideen ◽  
Salina Budin ◽  
Koay Mei Hyie ◽  
Nor Azirah Mohd Fohimi

Stirring tool is one of the important factor that contribute to the successful of Friction Stir Welding (FSW). Role of tool, is to heat the welding zone and stir the material along the process. Many studies have been conducted by other researchers to improve the performance of stirring tool. Similar to this work, it is aimed to investigate and analyze the effect of stirring tool surface condition on wear characteristics in friction stir welding process. Four tools have been fabricated with pre-determined surface condition. Tool 1: H13 without heat treatment and without coating. Tool 2: H13 with heat treatment only. Tool 3: H13 with TiCN coating only and Tool 4: H13 with heat treatment and with TiCN coating. Friction stir welding was performed to test and verify the performance of fabricated tools. Process parameter used are 1270 RPM for rotating speed while 218 mm/min for welding speed. From the result, Tool 4 performed better in terms of physical wear as well as wear rate.


2021 ◽  
Vol 50 (9) ◽  
pp. 2743-2754
Author(s):  
Ashish Jacob ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Abdulrahman Al-Ahmari ◽  
Mustufa Haider Abidi ◽  
...  

Certain age hardenable alloys such as AA7475 cannot be joined with perfection using fusion welding techniques. This requires non-conventional welding technique such as friction stir welding process to join these ‘difficult to weld’ alloys. In this study, three different cooling conditions i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have been analyzed to understand its impact on the welding process. In-process cooling was found to behave effectively and also enhanced the mechanical properties of the welded joints. A stable microstructure was clearly seen in the images observed under the metallurgical microscope. The weld efficiencies were found to be good in each of the samples which are indicative of a strong metallic joint. The effective cooling conditions employed had an overall positive impact on the joint.


2016 ◽  
Vol 857 ◽  
pp. 228-231
Author(s):  
Ho Sung Lee ◽  
Ye Rim Lee ◽  
Kyung Ju Min

Aluminum-Lithium alloys have been found to exhibit superior mechanical properties as compared to the conventional aerospace aluminum alloys in terms of high strength, high modulus, low density, good corrosion resistance and fracture toughness at cryogenic temperatures. Even though they do not form low-melting eutectics during fusion welding, there are still problems like porosity, solidification cracking, and loss of lithium. This is why solid state friction stir welding is important in this alloy. It is known that using Al-Cu-Li alloy and friction stir welding to super lightweight external tank for space shuttle, significant weight reduction has been achieved. The objective of this paper is to investigate the effect of friction stir tool rotation speed on mechanical and microstructural properties of Al-Cu-Li alloy. The plates were joined with friction stir welding process using different tool rotation speeds (300-800 rpm) and welding speeds (120-420 mm/min), which are the two prime welding parameters in this process.


2013 ◽  
Vol 753-755 ◽  
pp. 431-434 ◽  
Author(s):  
Pierpaolo Carlone ◽  
Gaetano S. Palazzo

In recent years friction stir welding process has received a great deal of attention from the transport industry. During the process, heat generation and material stirring induce significant microstructural alteration in the base material, affecting the properties of the welded assembly. In this paper the influence of process parameters, namely rotating speed and welding speed, on mechanical properties of AA2024-T3 friction stir butt welds is experimentally investigated. An increase of the yield stress has been found decreasing the heat input, while an opposite variation was measured for the elongation.


Sign in / Sign up

Export Citation Format

Share Document