scholarly journals Machine Learning Based Prediction of Suicide Probability

Many factors have led to the increase of suicide-proneness in the present era. As a consequence, many novel methods have been proposed in recent times for prediction of the probability of suicides, using different metrics. The current work reviews a number of models and techniques proposed recently, and offers a novel Bayesian machine learning (ML) model for prediction of suicides, involving classification of the data into separate categories. The proposed model is contrasted against similar computationally-inexpensive techniques such as spline regression. The model is found to generate appreciably accurate results for the dataset considered in this work. The application of Bayesian estimation allows the prediction of causation to a greater degree than the standard spline regression models, which is reflected by the comparatively low root mean square error (RMSE) for all estimates obtained by the proposed model.

2018 ◽  
Vol 14 (2) ◽  
pp. 225
Author(s):  
Indriyanti Indriyanti ◽  
Agus Subekti

Konsumsi energi bangunan yang semakin meningkat mendorong para peneliti untuk membangun sebuah model prediksi dengan menerapkan metode machine learning, namun masih belum diketahui model yang paling akurat. Model prediktif untuk konsumsi energi bangunan komersial penting untuk konservasi energi. Dengan menggunakan model yang tepat, kita dapat membuat desain bangunan yang lebih efisien dalam penggunaan energi. Dalam tulisan ini, kami mengusulkan model prediktif berdasarkan metode pembelajaran mesin untuk mendapatkan model terbaik dalam memprediksi total konsumsi energi. Algoritma yang digunakan yaitu SMOreg dan LibSVM dari kelas Support Vector Machine, kemudian untuk evaluasi model berdasarkan nilai Mean Absolute Error dan Root Mean Square Error. Dengan menggunakan dataset publik yang tersedia, kami mengembangkan model berdasarkan pada mesin vektor pendukung untuk regresi. Hasil pengujian kedua algoritma tersebut diketahui bahwa algoritma SMOreg memiliki akurasi lebih baik karena memiliki nilai MAE dan RMSE sebesar 4,70 dan 10,15, sedangkan untuk model LibSVM memiliki nilai MAE dan RMSE sebesar 9,37 dan 14,45. Kami mengusulkan metode berdasarkan algoritma SMOreg karena kinerjanya lebih baik.


2020 ◽  
Vol 13 (5) ◽  
pp. 827-832
Author(s):  
Iflah Aijaz ◽  
Parul Agarwal

Introduction: Auto-Regressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN) are leading linear and non-linear models in Machine learning respectively for time series forecasting. Objective: This survey paper presents a review of recent advances in the area of Machine Learning techniques and artificial intelligence used for forecasting different events. Methods: This paper presents an extensive survey of work done in the field of Machine Learning where hybrid models for are compared to the basic models for forecasting on the basis of error parameters like Mean Absolute Deviation (MAD), Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Normalized Root Mean Square Error (NRMSE). Results: Table 1 summarizes important papers discussed in this paper on the basis of some parameters which explain the efficiency of hybrid models or when the model is used in isolation. Conclusion: The hybrid model has realized accurate results as compared when the models were used in isolation yet some research papers argue that hybrids cannot always outperform individual models.


2022 ◽  
Vol 23 (1) ◽  
pp. 172-186
Author(s):  
Pundru Chandra Shaker Reddy ◽  
Sucharitha Yadala ◽  
Surya Narayana Goddumarri

Agriculture is the key point for survival for developing nations like India. For farming, rainfall is generally significant. Rainfall updates are help for evaluate water assets, farming, ecosystems and hydrology. Nowadays rainfall anticipation has become a foremost issue. Forecast of rainfall offers attention to individuals and knows in advance about rainfall to avoid potential risk to shield their crop yields from severe rainfall. This study intends to investigate the dependability of integrating a data pre-processing technique called singular-spectrum-analysis (SSA) with supervised learning models called least-squares support vector regression (LS-SVR), and Random-Forest (RF), for rainfall prediction. Integrating SSA with LS-SVR and RF, the combined framework is designed and contrasted with the customary approaches (LS-SVR and RF). The presented frameworks were trained and tested utilizing a monthly climate dataset which is separated into 80:20 ratios for training and testing respectively. Performance of the model was assessed using Root Mean Square Error (RMSE) and Nash–Sutcliffe Efficiency (NSE) and the proposed model produces the values as 71.6 %, 90.2 % respectively. Experimental outcomes illustrate that the proposed model can productively predict the rainfall. ABSTRAK:Pertanian adalah titik utama kelangsungan hidup negara-negara membangun seperti India. Untuk pertanian, curah hujan pada amnya ketara. Kemas kini hujan adalah bantuan untuk menilai aset air, pertanian, ekosistem dan hidrologi. Kini, jangkaan hujan telah menjadi isu utama. Ramalan hujan memberikan perhatian kepada individu dan mengetahui terlebih dahulu mengenai hujan untuk menghindari potensi risiko untuk melindungi hasil tanaman mereka dari hujan lebat. Kajian ini bertujuan untuk menyelidiki kebolehpercayaan mengintegrasikan teknik pra-pemprosesan data yang disebut analisis-spektrum tunggal (SSA) dengan model pembelajaran yang diawasi yang disebut regresi vektor sokongan paling rendah (LS-SVR), dan Random-Forest (RF), ramalan hujan. Menggabungkan SSA dengan LS-SVR dan RF, kerangka gabungan dirancang dan dibeza-bezakan dengan pendekatan biasa (LS-SVR dan RF). Kerangka kerja yang disajikan dilatih dan diuji dengan menggunakan set data iklim bulanan yang masing-masing dipisahkan menjadi nisbah 80:20 untuk latihan dan ujian. Prestasi model dinilai menggunakan Root Mean Square Error (RMSE) dan Nash – Sutcliffe Efficiency (NSE) dan model yang dicadangkan menghasilkan nilai masing-masing sebanyak 71.6%, 90.2%. Hasil eksperimen menggambarkan bahawa model yang dicadangkan dapat meramalkan hujan secara produktif.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
Adhitio Satyo Bayangkari Karno

Abstract   This study aims to measure the accuracy in predicting time series data using the LSTM (Long Short-Term Memory) machine learning method, and determine the number of epochs needed to produce a small RMSE (Root Mean Square Error) value. The result of this research is a high level of variation in RMSE value to the number of epochs needed in the data processing. This variation is quite difficult to obtain the right epoch value. By doing an iteration of the LSTM process on the number of different epochs (visualized in the graph), then the number of epochs with a minimum RMSE value will be easier to obtain. From the research of BBRI's stock data prediction, a good RMSE value was obtained (RMSE = 227.470333244533).   Keywords: long short-term memory, machine learning, epoch, root mean square error, mean square error.   Abstrak   Penelitian ini bertujuan untuk mengukur ketelitian dalam memprediksi data time series menggunakan metode mesin belajar LSTM (Long Short-Term Memory), serta menentukan banyaknya epoch yang diperlukan untuk menghasilkan nilai RMSE (Root Mean Square Error) yang kecil. Hasil dari penelitian ini adalah tingkat variasi yang tinggi nilai rmse terhdap jumlah epoch yang diperlukan dalam proses pengolahan data. Variasi ini cukup menyulitkan untuk memperoleh nilai epoch yang tepat. Dengan melakukan iterasi dari proses LSTM terhadap jumlah epoch yang berbeda (di visualisasikan dalam grafik), maka jumlah epoch dengan nilai RMSE minimal akan lebih mudah diperoleh. Dari penelitan prediksi data saham  BBRI diperoleh nilai RMSE yang cukup baik yaitu 227,470333244533. Kata kunci: long short-term memory, machine learning, epoch, root mean square error, mean square error.


2018 ◽  
Vol 197 ◽  
pp. 09002 ◽  
Author(s):  
Diding Suhandy ◽  
Meinilwita Yulia

The unique processing of Arabica Gayo Wine coffee produces special attributes to the beverage and could increase its value. However, it is important to prove the authenticity of Arabica Gayo Wine coffee using reliable methods. The objective of this study was to evaluate the potential of UV-visible spectroscopy and principal component analysis-discriminant analysis (PCA-DA) method for classification of ground roasted Arabica Gayo Wine coffee. A number of 200 samples of Arabica Gayo Wine coffee and 200 samples of Arabica Gayo normal (not Wine) coffee was used. The spectral data obtained in the UV-visible region were analyzed using PCA-DA with standard normal variate (SNV) and followed by Savitzky-Golay smoothing with different number of smoothing point (NSP). The results showed that the best PCA-DA model was obtained with NSP = 23 with coefficient of determination for calibration (R2) = 0.99, root mean square error of calibration (RMSEC) = 0.005692 and root mean square error of validation (RMSEV) = 0.006112. Using this model, a good classification between Gayo Wine and Gayo normal in prediction step was achieved with 100% accuracy, sensitivity and specificity. Thus, the proposed method can be used for the evaluation of authenticity of ground roasted Arabica Gayo Wine coffee.


Author(s):  
A. Zarei ◽  
M. Hasanlou ◽  
M. Mahdianpari

Abstract. Soil salinity, a significant environmental indicator, is considered one of the leading causes of land degradation, especially in arid and semi-arid regions. In many cases, this major threat leads to loss of arable land, reduces crop productivity, groundwater resources loss, increases economic costs for soil management, and ultimately increases the probability of soil erosion. Monitoring soil salinity distribution and degree of salinity and mapping the electrical conductivity (EC) using remote sensing techniques are crucial for land use management. Salt-effected soil is a predominant phenomenon in the Eshtehard Salt Lake located in Alborz, Iran. In this study, the potential of Sentinel-2 imagery was investigated for mapping and monitoring soil salinity. According to the satellite's pass, different salt properties were measured for 197 soil samples in the field data study. Therefore several spectral features, such as satellite band reflectance, salinity indices, and vegetation indices, were extracted from Sentinel-2 imagery. To build an optimum machine learning regression model for soil salinity estimation, three different regression models, including Gradient Boost Machine (GBM), Extreme Gradient Boost (XGBoost), and Random Forest (RF), were used. The XGBoostmethod outperformed GBM and RF with the coefficient of determination (R2) more than 76%, Root Mean Square Error (RMSE) about 0.84 dS m−1, and Normalized Root Mean Square Error (NRMSE) about 0.33 dS m−1. The results demonstrated that the integration of remote sensing data, field data, and using an appropriate machine learning model could provide high-precision salinity maps to monitor soil salinity as an environmental problem.


2021 ◽  
Vol 13 (9) ◽  
pp. 1630
Author(s):  
Yaohui Zhu ◽  
Guijun Yang ◽  
Hao Yang ◽  
Fa Zhao ◽  
Shaoyu Han ◽  
...  

With the increase in the frequency of extreme weather events in recent years, apple growing areas in the Loess Plateau frequently encounter frost during flowering. Accurately assessing the frost loss in orchards during the flowering period is of great significance for optimizing disaster prevention measures, market apple price regulation, agricultural insurance, and government subsidy programs. The previous research on orchard frost disasters is mainly focused on early risk warning. Therefore, to effectively quantify orchard frost loss, this paper proposes a frost loss assessment model constructed using meteorological and remote sensing information and applies this model to the regional-scale assessment of orchard fruit loss after frost. As an example, this article examines a frost event that occurred during the apple flowering period in Luochuan County, Northwestern China, on 17 April 2020. A multivariable linear regression (MLR) model was constructed based on the orchard planting years, the number of flowering days, and the chill accumulation before frost, as well as the minimum temperature and daily temperature difference on the day of frost. Then, the model simulation accuracy was verified using the leave-one-out cross-validation (LOOCV) method, and the coefficient of determination (R2), the root mean square error (RMSE), and the normalized root mean square error (NRMSE) were 0.69, 18.76%, and 18.76%, respectively. Additionally, the extended Fourier amplitude sensitivity test (EFAST) method was used for the sensitivity analysis of the model parameters. The results show that the simulated apple orchard fruit number reduction ratio is highly sensitive to the minimum temperature on the day of frost, and the chill accumulation and planting years before the frost, with sensitivity values of ≥0.74, ≥0.25, and ≥0.15, respectively. This research can not only assist governments in optimizing traditional orchard frost prevention measures and market price regulation but can also provide a reference for agricultural insurance companies to formulate plans for compensation after frost.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1020
Author(s):  
Yanqi Dong ◽  
Guangpeng Fan ◽  
Zhiwu Zhou ◽  
Jincheng Liu ◽  
Yongguo Wang ◽  
...  

The quantitative structure model (QSM) contains the branch geometry and attributes of the tree. AdQSM is a new, accurate, and detailed tree QSM. In this paper, an automatic modeling method based on AdQSM is developed, and a low-cost technical scheme of tree structure modeling is provided, so that AdQSM can be freely used by more people. First, we used two digital cameras to collect two-dimensional (2D) photos of trees and generated three-dimensional (3D) point clouds of plot and segmented individual tree from the plot point clouds. Then a new QSM-AdQSM was used to construct tree model from point clouds of 44 trees. Finally, to verify the effectiveness of our method, the diameter at breast height (DBH), tree height, and trunk volume were derived from the reconstructed tree model. These parameters extracted from AdQSM were compared with the reference values from forest inventory. For the DBH, the relative bias (rBias), root mean square error (RMSE), and coefficient of variation of root mean square error (rRMSE) were 4.26%, 1.93 cm, and 6.60%. For the tree height, the rBias, RMSE, and rRMSE were—10.86%, 1.67 m, and 12.34%. The determination coefficient (R2) of DBH and tree height estimated by AdQSM and the reference value were 0.94 and 0.86. We used the trunk volume calculated by the allometric equation as a reference value to test the accuracy of AdQSM. The trunk volume was estimated based on AdQSM, and its bias was 0.07066 m3, rBias was 18.73%, RMSE was 0.12369 m3, rRMSE was 32.78%. To better evaluate the accuracy of QSM’s reconstruction of the trunk volume, we compared AdQSM and TreeQSM in the same dataset. The bias of the trunk volume estimated based on TreeQSM was −0.05071 m3, and the rBias was −13.44%, RMSE was 0.13267 m3, rRMSE was 35.16%. At 95% confidence interval level, the concordance correlation coefficient (CCC = 0.77) of the agreement between the estimated tree trunk volume of AdQSM and the reference value was greater than that of TreeQSM (CCC = 0.60). The significance of this research is as follows: (1) The automatic modeling method based on AdQSM is developed, which expands the application scope of AdQSM; (2) provide low-cost photogrammetric point cloud as the input data of AdQSM; (3) explore the potential of AdQSM to reconstruct forest terrestrial photogrammetric point clouds.


Sign in / Sign up

Export Citation Format

Share Document