scholarly journals Hybridization of Electrical Discharge Machining Process

: This paper discusses the recent developments in the field of Electrical Discharge Machining (EDM) hybrid process. Spark machining is a universally recognised unconventional process, excluding the restriction of having low machining efficiency. To overcome this, various investigations have been made on designing of electrode, types of dielectric medium, variations in input parameters etc. Although material expulsion rate have been found to improve, nonetheless it cannot encounter the requirements of modern industries and the quality of surface is inferior. To increase further the utility of EDM, its hybridization with other process have to be carried out. A hybrid process can reduce the machining time while maintaining better surface and material expulsion rate. In hybrid process, the mechanism of two processes is applied concurrently or consecutively. Although, the performance of combined process is better as compared to the individual processes but hybridization increases the process complexity.

Author(s):  
Sagil James ◽  
Sharadkumar Kakadiya

Shape Memory Alloys are smart materials that tend to remember and return to its original shape when subjected to deformation. These materials find numerous applications in robotics, automotive and biomedical industries. Micromachining of SMAs is often a considerable challenge using conventional machining processes. Micro-Electrical Discharge Machining is a combination of thermal and electrical processes, which can machine any electrically conductive material at micron scale independent of its hardness. It employs dielectric medium such as hydrocarbon oils, deionized water, and kerosene. Using liquid dielectrics has adverse effects on the machined surface causing cracking, white layer deposition, and irregular surface finish. These limitations can be minimized by using a dry dielectric medium such as air or nitrogen gas. This research involves the experimental study of micromachining of Shape Memory Alloys using dry Micro-Electrical Discharge Machining process. The study considers the effect of critical process parameters including discharge voltage and discharge current on the material removal rate and the tool wear rate. A comparison study is performed between the Micro-Electrical Discharge Machining process with using the liquid as well as air as the dielectric medium. In this study, microcavities are successfully machined on shape memory alloys using dry Micro-Electrical Discharge Machining process. The study found that the dry Micro-Electrical Discharge Machining produces a comparatively better surface finish, has lower tool wear and lesser material removal rate compared to the process using the liquid as the dielectric medium. The results of this research could extend the industrial applications of Micro Electrical Discharge Machining processes.


2020 ◽  
Vol 66 (4) ◽  
pp. 243-253 ◽  
Author(s):  
Sanjay Sundriyal ◽  
Vipin ◽  
Ravinderjit Singh Walia

Near-dry electrical discharge machining (ND-EDM) is an eco-friendly process. In this study, an approach has been made to make the machining process more efficient than ND-EDM with the addition of metallic powder with the dielectric medium to machine EN-31 die steel. Powdermixed near-dry EDM (PMND-EDM) has several advantages over the ND-EDM or conventional electrical discharge machining (EDM) process, such as a higher material removal rate (MRR), fine surface finish (Ra), sharp cutting edge, lesser recast layer, and lower deposition of debris. The output response variables are MRR, Ra, residual stress (RS) and micro-hardness (MH) of the machined surfaces. Further study of the workpiece was performed, and a comparative study was conducted between ND-EDM and PMND-EDM. In this proposed method of machining, the MRR, Ra, and MH increased by 17.85 %, 16.36 %, and 62.69 % while RS was reduced by 56.09 %.


Author(s):  
Nadeem Faisal ◽  
Sumit Bhowmik ◽  
Kaushik Kumar

The tremendous growth of manufacturing industries and desired need of accuracy and precision has put a great importance on non-traditional machining processes. Metal and non-metals having properties like high strength, toughness, and hardness is generally machined by non-conventional machining methods. One of earliest non-traditional machining that is still in use and being effectively utilized in industries is wire electrical discharge machine. This machining technique gives a tough line of competition to conventional machining process like milling, grinding, broaching, etc. Cutting intricate and delicate shapes with accuracy and precision gives this machining technique an edge over other conventional machining and non-conventional machining processes. This chapter provides an insight to various research and prominent work done in field of WEDM by various scientists, researchers, and academicians. The chapter also emphasizes various advantages and disadvantages of different modelling and optimization methods used. The chapter concludes with some recommendations about trends for future WEDM researchers.


Author(s):  
Jie Shing Lo ◽  
Chang Tai Jiang ◽  
Kun Ling Wu

Under special conditions, electrical discharge machining is prone to experiencing poor machining removal rate. This creates debris deposits that lead to decreased machining efficiency and poorer machining quality in the machining workpieces during machining operations. Thus, the present study investigated the use of slotted electrodes to improve machining debris removal and compared the machining capability of such electrodes with that of cylindrical, nonslotted electrodes. Concurrently, oscilloscopes were used to measure the machining voltage and current signals during the machining process, in which waveforms were analyzed to gain insight into the electrical discharge condition of the electrical discharge machining. Compared with general cylindrical, nonslotted electrodes, the deep slotted electrodes improved the material removal rate on large-scale and hemisphere electrical discharge machining result by 91% and 116.7%, respectively. The experiment results also show that slotted electrodes are inapplicable to finishing operations. Therefore, during roughing operations, slotted electrodes should be used to lower machining time; during finishing operations, cylindrical, nonslotted electrodes should be used to adjust machining precision.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


Author(s):  
M Adam Khan ◽  
A K Gokul ◽  
M.P Bharani Dharan ◽  
R.V.S Jeevakarthikeyan ◽  
M Uthayakumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document