scholarly journals A Low-Cost PV Emulator using Labview and Arduino

A solar panel emulator is a programmable power supply which mimics the characteristics of a solar panel and can be used under laboratory conditions. This paper proposes the design of an economical solar panel emulator using LabView software and its implementation using Arduino. The proposed emulator consists of a flyback converter with a MOSFET driver which brings out the characteristics of the desired PV panel. The characteristic curves are generated using LabView software and PWM signal is generated in hardware. This PWM signal drives the MOSFET which in turn operates the flyback converter. The proposed system is simulated using MATLAB software and a prototype of the proposed system is implemented using Arduino UNO R3.

Author(s):  
Zhengwang Xu ◽  
Wei Mei ◽  
Jiaqi Yu ◽  
Jiarui Zhang ◽  
Yuchun Yi ◽  
...  

As being restricted by factors such as cost, efficiency and size, the development of high-power solar LED street light controller is faced with plenty of difficulties. In case that a structure of two independent DC/DC is applied as the main circuit, it has to face problems such as large size and high cost; in case of applying the bidirectional BUCK/BOOST circuit, it requires change-over switches to control the solar panel and LED light. As being restricted by withstanding voltage, on-resistance and cost, a PMOS device cannot be used as the change-over switch of solar panel and LED light. However, when being used as a change-over switch, an NMOS device must apply the low-side mode under which the negative ends of the mentioned three parts are cut off. In the condition of applying the low-side mode, a differential circuit must be used to detect the voltage of the solar panel. Furthermore, in order to make sure batteries can still be regularly charged after wearing out in daylight, the controller must be supplied with power through a dual power supply circuit that can obtain power from both the solar panel and the battery. The demander has a requirement on extremely low standby power consumption of the product, and thus it is necessary to minimize the circuit that is live while working in standby mode. Methods: The bidirectional BUCK/BOOST circuit structure is applied to the main circuit to realize a higher change-over efficiency while giving considerations to both cost and size. The NMOS device, model IRFB4410ZPBF, with a price of about three yuan, is used as the switching device, and the low-side mode is applied, that is the switches inserted in between negative end of the solar panel or LED light and that of the DC/DC circuit. The low-cost rail-to-rail operational amplifier LM358 is used to form a differential amplification circuit for detecting the voltage of the solar panel. A XL1509-12E1 chip that only costs 0.88 yuan/pc is selected as the main change-over chip for the power supply, which has realized the highly-efficient and low-cost change-over of the power supply. A dual power supply circuit and a step-down protective circuit are designed for the XL1509-12E1 change-over chip. By comparing solar panel voltage with battery voltage, the solar panel booting circuit is realized. Only when solar panel voltage is higher than battery voltage, does the system program start to power it up for running, so that the outage of most of the circuits of the system under standby mode does not consume energy. Furthermore, the solar panel voltage detecting circuit, the solar panel booting circuit and several return difference functions are corrected during system debugging. Results: The circuit board of the entire controller features small size, low cost and high efficiency. It measures about 100*62*18mm in size, costs about 60 yuan, and the charge/discharge change-over efficiency reaches up to over 95%. The controller has many functions: it is capable of operating within a large scope, in which, solar panel voltage is subject to 15~50V, LED light voltage is subject to 15~60V, battery voltage is subject to 10~35V and battery-end charge/discharge current is 10A; it is capable of adapting to monocrystalline silicon/multicrystalline silicon/thin-film and many other kinds of solar panels, as well as lithium/lead-acid and many other kinds of batteries; it is capable of detecting the conversion of day and night, automatically controlling charging and discharging and automatically making adaptive adjustment according to seasonal variations; the current to be consumed during standby will be maintained below 3mA, and thus the power consumption is extremely low. Conclusion: By selecting the bidirectional BUCK/BOOST circuit structure, applying low-side mode for switching of solar panel and LED light, using a differential circuit to detect solar panel voltage, using a low-cost DC/DC chip to realize power supply change-over, designing a dual power supply circuit, introducing solar panel booting circuit and other hardware design, as well as MPPT algorithm, state recognition and control, return difference control and other software design, a solar LED street light control product featuring small size, low cost, high efficiency and multiple functions is successfully developed.


Author(s):  
Aisha Ajeerah Azahar ◽  
◽  
Nor Akmal Mohd Jamail ◽  
Amal Hayati Mat Isa ◽  
Fatin Nazirah Md Sani ◽  
...  

Economical home system can be defined as one realization of home that have a cost-effective ideal by using specific set of technologies combined with the renewable energy as a power supply. This system has a highly advance for lighting, temperature control, socket and own power supply by using solar panel. This system is developed in this project and focused on B40 community that represents the bottom 40% of income earners and also this project becomes suitable for this community for getting an energy efficiency system. Due to the COVID-19, B40 households were reported to have lost their jobs causing financial hardship and had to face the issue of high electricity bills which are very burdensome for them at all in order to pay the cost electricity for monthly. The aim of the article is to design and simulate the solar power system including battery storage in suitable software for a residential house especially in B40 community home and also to analyze the potential of battery storage in order to store the energy from solar panel. Therefore, the economical electricity home system using solar energy for B40 community is proposed in this project for producing an energy efficient system at home. In addition, an electrical floor plan and floor plan of B40 community home is designed in the SketchUp software that using basic electrical equipment such as lighting, ceiling fan and socket. The system is developed by using the MATLAB software in order to produce the result of energy efficiency by using the renewable energy which is solar system and also battery storage. According to the data produced from the calculation of old bills and new bills, the energy consumptions are calculated and also be compared before and after using the renewable energy which is using solar system. The data obtained through calculation of maximum demand in new bill is used in the simulation of solar system in MATLAB software. The results obtained show that after using an energy-efficient load, the monthly new bill is around RM 27.79 which is around RM 10.75 less than the monthly old bill before using an energy-efficient load. It can be concluded that the use of renewable energy in B40 community home can save the energy and also money.


2020 ◽  
Vol 9 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Novie Ayub Windarko ◽  
Muhammad Nizar Habibi ◽  
Mochamad Ari Bagus Nugroho ◽  
Eka Prasetyono

This paper describes a low-cost solar panel simulator for Maximum Power Point Tracking (MPPT) method testing, especially under partially shading conditions. The simulator consists of a DC power supply and a solar panel. The simulator works to emulate the characteristics of solar panels without depending on artificial illumination or sunlight. The simulator can represent the needed irradiation through the settings on the DC power supply. The experimental setup is developed to emulate the characteristics of solar panels at Standard Test Conditions (STC) irradiation conditions as well as varying irradiation conditions. Testing is done to emulate irradiation varies from 200-1,000 W/m2. To emulate the characteristics of solar panels in partial shading conditions, two DC power supply units and two solar panels are used. Each solar panel is simulated to receive different solar irradiations. The test results show that the simulator can emulate the characteristics of solar panels under partial shading conditions which has several maximum power points. Furthermore, partial shading conditions are simulated under varying irradiation conditions which resulted varying maximum power point values.


2020 ◽  
Vol 12 (2) ◽  
pp. 78-84
Author(s):  
Abhisak Sharma ◽  
Pardeep Kumar ◽  
Gyander Ghangas ◽  
Vishal Gupta ◽  
Himanshu Sharma ◽  
...  

This paper represents the comparison of the voltages generated by the tracking and static solar panels. The work also aims to design and  fabrication of a cheap and efficient tracking device. This device comprises of hardware and software. A rigid mechanical structure with nut and  screw as the transmission is developed. 4 LDRs and DC motors are employed, which are cheap and less power consuming. As far as the software  concerns, an open source microcontroller “Arduino UNO” board is used because of their simplicity and cost effectiveness. This Sun tracking device with a PV panel installed on it, is placed outside at the roof of the building along with a static solar panel. Output voltages generated from both panels are recorded in SD card through data logger in Arduino UNO. This real-time data shows the difference in amplitude of both the signals. Voltage of rotating panel is more than static one resulting that the tracking device can increase the efficiency of the panel by exposing the PV panel more to the sun light. Hence this setup proves that the solar panel with tracking system generates more energy than solar panel without tracking system. Keywords: Solar Tracker, LDR, PV Panel, Arduino UNO Board.


Author(s):  
Siti Amely Jumaat ◽  
Ammar Syahmi Bin Mohd Anuar ◽  
Mohd Noor Abdullah ◽  
Nur Hanis Radzi ◽  
Rohaiza Hamdan ◽  
...  

This project aims to design a simulator for PV monitoring using LabVIEW. This project will be divided into two parts ; software where LabVIEW and Arduino IDE been contracted and hardware parts. First part involves the software development. In this project, LabVIEW program is used as the main program to monitor the output of solar panel; voltage, current, power and temperature in real time. Next, the Arduino IDE program is used to interact the sensors with the Arduino board. The Arduino Uno microcontroller board is used as data acquisition medium to collect data from the solar panel. <span lang="EN-MY">Second, the hardware part which is PV panel setup and measurement circuit that consist of sensors and Arduino board so that the sensors data will transfer and display to the PC connected. In this simulator, the sensors are connected to the Analog I/O of Arduino Uno microcontroller which read the analogue input of sensors. The Arduino then is connected to the PC program LabVIEW to display the I-V graph and P-V graph. To make the data more significant, the data will be collected at the location 1.8635° N, 103.1089 ° E which is in Parit Raja, Batu Pahat, Johor. The data was collected with 3 different day and time; 12PM, 1PM and 2PM on 28/11/2017, 29/11/2017 and 30/11/2017.</span>


2016 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Potnuru Devendra ◽  
Mary K. Alice ◽  
Ch. Sai Babu ◽  
◽  
◽  
...  

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Mario Ponce-Silva ◽  
Daniel Salazar-Pérez ◽  
Oscar Miguel Rodríguez-Benítez ◽  
Luis Gerardo Vela-Valdés ◽  
Abraham Claudio-Sánchez ◽  
...  

The main contribution of this paper is to show a new AC/DC converter based on the rearrangement of the flyback converter. The proposed circuit only manages part of the energy and the rest is delivered directly from the source to the load. Therefore, with the new topology, the efficiency is increased, and the stress of the components is reduced. The rearrangement consist of the secondary of the flyback is placed in parallel with the load, and this arrangement is connected in series with the primary side and the rectified voltage source. The re-arranged flyback is only a reductive topology and with no magnetic isolation. It was studied as a power supply for LEDs. A low frequency averaged analysis (LFAA) was used to determine the behavior of the proposed circuit and an equivalent circuit much easier to analyze was obtained. To validate the theoretical analysis, a design methodology was developed for the re-arranged flyback converter. The designed circuit was implemented in a 10 W prototype. Experimental results showed that the converter has a THDi = 21.7% and a PF = 0.9686.


Author(s):  
Carlos A. Gallo ◽  
Fernando L. Tofoli ◽  
Ernane A. A. Coelho ◽  
Luiz C. de Freitas ◽  
Valdeir J. Farias ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document