scholarly journals Comparison of open circuit voltage generated by tracking solar panel and static solar panel using arduino board

2020 ◽  
Vol 12 (2) ◽  
pp. 78-84
Author(s):  
Abhisak Sharma ◽  
Pardeep Kumar ◽  
Gyander Ghangas ◽  
Vishal Gupta ◽  
Himanshu Sharma ◽  
...  

This paper represents the comparison of the voltages generated by the tracking and static solar panels. The work also aims to design and  fabrication of a cheap and efficient tracking device. This device comprises of hardware and software. A rigid mechanical structure with nut and  screw as the transmission is developed. 4 LDRs and DC motors are employed, which are cheap and less power consuming. As far as the software  concerns, an open source microcontroller “Arduino UNO” board is used because of their simplicity and cost effectiveness. This Sun tracking device with a PV panel installed on it, is placed outside at the roof of the building along with a static solar panel. Output voltages generated from both panels are recorded in SD card through data logger in Arduino UNO. This real-time data shows the difference in amplitude of both the signals. Voltage of rotating panel is more than static one resulting that the tracking device can increase the efficiency of the panel by exposing the PV panel more to the sun light. Hence this setup proves that the solar panel with tracking system generates more energy than solar panel without tracking system. Keywords: Solar Tracker, LDR, PV Panel, Arduino UNO Board.

2018 ◽  
Vol 7 (2) ◽  
pp. 913
Author(s):  
Muhammed Sabri Salim

During the daily sun cycle, the falling rays are of varying intensity on the solar panel reducing the energy generated from it. This is evident in the energy production of solar panels that are installed on the slanted surfaces of homes scattered in the rain regions of the world. In this research, the reasons for the low efficiency of energy production of solar panels that are installed on the A-frame designs of homes were studied and solved. The design of an integrated tracking system is developed based on fuzzy logic control using an open source code that can be easily modified. The performance and characteristics of the solar tracking device are tested experimentally to test its suitability for use with slanted roofs homes. The integrated solar localization system offers economical and efficient solar monitoring, as well as open source programming, which allows for future improvements and changes. In addition, the single-axis fuzzy tracking system was good for moving both panels in less than five seconds towards the sun. The adoption of the proposed design provides an extremely accurate tracking system and therefore, maximizes the potential of power generated by the solar panel since it will meet the sun's rays from dawn to dusk. The economic effect of the proposed design is to approximately double the value of electrical power received compared to the fixed design.  


Author(s):  
Belly Yan Dewantara ◽  
Daeng Rahmatullah

<em>Nowadays solar panel is widely used as an independent power plant, it can be seen the many applications of solar panels on electrical equipment, such as traffic light, general lighting, etc. The energi produced by solar panel is affected by the absorbed sunlight. generally solar panels are implemented statically, this causes the absorption of solar energi is not maximal in the morning and afternoon. To maximize the absorption of sunlight, solar panels must always be facing perpendicular to the position of the sun. Automatic solar tracking system is needed to solve these problems, It is makes solar panels always perpendicular to the sun and can follow the movement of the sun, so that the absorption of solar energi is more leverage. The results of the test show the use of automatic tracking system to get the maximum absorption of solar energi indicated by a more stable voltage output,and the power generated is greater than using a static solar panel. Automatic Sun Tracking System (ASTS) increase the average power up to ± 39-41 watt / day with the efficiency of ASTS 81.66% on PV panel 50 WP.</em>


ELKHA ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 105
Author(s):  
Ervan Pratama ◽  
Richa Watiasih

The availability of two types of solar panels that are common in the market namely monocrystalline and polycrystalline types cause confusion in the selection so that many solar panel users are questioning the differences of these two types of solar panel. This study produced a data logger system using Arduino Uno R3 to control voltage, current and temperature sensors for logging data that stores power measurement data from monocrystalline and polycrystalline solar panel in a micro SD. After it we can manage data to compare power produced between two types the solar panel. From the results of testing this data logger system it can be seen that monocrystalline solar panel are 9.18% better on power produced than polycrystalline when the maximum power conversion is generated.


SINERGI ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 73 ◽  
Author(s):  
Hamzah Eteruddin ◽  
Atmam Atmam ◽  
David Setiawan ◽  
Yanuar Z. Arief

People can make solar energy alternative energy by employing solar panels to generate electricity. The utilization of solar energy on a solar panel to generate electricity is affected by the weather and the duration of the radiation, and they will affect the solar panel’s temperature. There are various types of solar panels that can be found on the market today, including Mono-Crystalline and Poly-Crystalline. The difference in the material used needs to be observed in terms of temperature changes in the solar module. Our study’s findings showed that a change in the temperature would impact the solar panel’s output voltage, and the solar panel’s output voltage would change when it was connected to the load although the measured temperatures were almost the same.


2018 ◽  
Vol 24 (2) ◽  
pp. 134
Author(s):  
Robby Rachmatullah ◽  
Dessyana Kardha ◽  
Dani Triwiyanto

The transfer of electrical energy sources from non-renewable fossil fuels to alternative renewable fuels can be made by utilizing solar energy. The working system of arduino uno solar tracking system for STMIK AUB garden lights is by capturing solar energy through solar panels which are then stored inside the battery where the charging process is controlled by solar charge controller. LDR functions to receive and identify the radiated light quantities which are then forwarded into the arduino uno and processed to drive the DC motor that has become one with the solar panel. If the day begins to darken the LDR will inform the arduino uno and then it will be processed by arduino uno to turn on the DC light.


2020 ◽  
Author(s):  
Orlando Soares de Santana Filho ◽  
Carlos Henrique Mota Martins ◽  
Thiago Henrique Felix C. Ribeiro Conceição ◽  
Alex Vinicius dos Reis Freitas Silva ◽  
Adriano Honorato Braga ◽  
...  

Solar energy is a renewable and inexhaustible source, besidescausing damage to nature, being clean and sustainable.Transform the electromagnetic radiation emitted by the Sunelectrical energy are used solar panels. In order to improveefficiency and performance of this capture, a low-cost wasbuilt, a single-axis solar tracking system for photovoltaicpanels. The solution uses the automation Arduino UNO R3,open hardware, two photosensitive sensors LDR GL-5528, inaddition to a servo motor capable of moving the surface of aphotovoltaic plate according to the detection of the highestincidence of light. The circuit and its components wereprogrammed using the Arduino IDE software, version 1.8.11.As a result, it was possible to follow the movement of thesun, differing from a static panel, thus ensuring greater sunshineon the solar plate, as a result of this traceablecontrol prototype.


2021 ◽  
Vol 16 (3) ◽  
pp. 329
Author(s):  
Bambang Sudjasta ◽  
Purwojoko Suranto ◽  
Donny Montreano ◽  
Reda Rizal

The purpose of this study was to design a 3 Gross Tonnage (GT) fishing boat with a speed of 6 knots to obtain the shape and size of the vessel that is suitable for the water area that using the solar panel energy system. The ship was planned to travel about a maximum of 18 Km from the departure point. The steps of the research method for the design of fishing vessels include determining the principal size of the ship, making line drawings, drafting a general plan, construction design, ship tonnage capacity, electricity requirements, and then designing solar panel energy systems. This research resulted in a ship design with a length of 8 meters, 1.75 meters wide, and 1.3 meters high. Those specifications are used as constraints to determine the number of solar panels and batteries. To satisfy all of the goals, the 3 GT boat has limited 0.9KWh solar panels to travel for 9.7 NM (18 KM) at a speed of 6 knots, forcing daytime and night fishing fishermen to idle for 1 day. The difference is in the number of night fishing batteries that are 49% more than the daytime fishing which using 25 pcs 3.2V 100Ah. With the use of 51 pcs of battery, night fishing can move into daytime fishing so that it can fish more frequently than night fishing mode only


Author(s):  
Nur Farahida Mohd Shamsuddin Tan ◽  
◽  
Muhammad Heidzer Zainal Abidin ◽  
Lukman Iqbal Hussein ◽  
Mohd Hezri Mokhtar ◽  
...  

The project is to design an active solar tracking system which able to track the sunlight with the aid of light dependent resistor (LDR) as input sensor to read the intensity of sunlight. The solar tracking system uses platform as a base and it is moved by a servo motor as the platform needs to be moved towards the sunlight to get the optimum light. The solar tracking system is programmed by using microcontroller Arduino Uno as a main controller. After the setup of the hardware and program, the tracking motion of the tracking system has been implemented to track the sun based on sunlight direction. In this work, it is designed that the motion of the tracking system is depends on the value read by LDR. As a conclusion, the solar tracking system can increase the solar panels efficiency by keeping the solar panels perpendicular with sun’s position.


2021 ◽  
Vol 1 (2) ◽  
pp. 186-197
Author(s):  
Mst Jesmin Nahar ◽  
Md Rasel Sarkar ◽  
Moslem Uddin ◽  
Md Faruk Hossain ◽  
Md Masud Rana ◽  
...  

This paper presents the design and execution of a solar tracker system devoted to photovoltaic (PV) conversion panels. The proposed single-axis solar tracker is shifted automatically based on the sunlight detector or tracking sensor. This system also removes incident sunlight overlapping from sensors that are inside the sunlight tracking system. The Light Dependent Resistor (LDR) is used as a sensor to sense the intensity of light accurately. The sensors are placed at a certain distance from each other in the tracker system to avoid sunlight overlapping for maximum power production. The total system is designed by using a microcontroller (PIC16F877A) as a brain to control the whole system. The solar panel converts sunlight into electricity. The PV panel is fixed with a vertical axis of the tracker. This microcontroller will compare the data and rotate a solar panel via a stepper motor in the right direction to collect maximum photon energy from sunlight. From the experimental results, it can be determined that the automatic (PV solar tracker) sun tracking system is 72.45% more efficient than fixed panels, where the output power of the fixed panel and automatically adjusted panel are 8.289 watts and 14.287 watts, respectively.


2021 ◽  
Vol 11 (4) ◽  
pp. 29-44
Author(s):  
Dawin Maghanoy Omar Jr.

Consumer grade tracking systems exist but are not optimally designed for low-cost operation in the Philippines setting. Tracking devices typically use Global Positioning System (GPS) and Global System for Mobile Communications (GSM) technologies. Commonly, for device management and real-time tracking, data are transmitted as General Packet Radio Service (GPRS) to a proprietary or third-party cloud service. This method is costly in the Philippines context as well as power consuming. This study was conducted to design a tracking system that is optimized for short messaging service (SMS) mode of data transmission. This study covered the design of a tracking device using consumer-grade hardware components, development of system interface to enable remote operation using commands sent as short message(s), development of a simple desktop client monitoring service and actual field-testing using land and water vehicles. Tests results showed a 100% tracking data delivery efficiency and small difference between Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for each route indicating that there is a small variance in distance errors. The tracking device also performed well in a sea route which is comparable to a commercial standard GPS data logger. Test results also showed that the device can be used for tracking applications i.e., vehicle security, inland fleet management, monitoring of tourist boats, and research or field surveys, where GPS and GSM are available.


Sign in / Sign up

Export Citation Format

Share Document