scholarly journals Particle Optimization of Ceo2/Water Nanofluids in Flat Plate Solar Collector

The present research focuses on the role of CeO2/water nanofluid for estimating the performance of flat plate solar collector in respect of energetic and exergetic performance. Based on our experimental findings on varying mass flow rate, the present analysis focuses on a wide range of concentrations to find optimum volume concentration for which thermal performance is maximum. CeO2/water nanofluid exhibits high thermal conductivity improvement (~41.7%at 1.5% volume concentration) and comparatively lower dynamic viscosity. Performance evaluation of flat plate collector is based on first law analysis and qualitative nature of energy flow based on second law analysis. Experiments indicate that for~1.0% particle volume concentration at a mass flow rate of 0.03 kg/s, maximum collector efficiency is obtained up to 57.1% instead of water as the base fluid. Exergetic efficiency observed 84.6%at optimum concentration (~1.0% particle volume) of nanofluid at0.01 kg/s flow rate.

Author(s):  
Nang Khin Chaw Sint ◽  
I. A. Choudhury ◽  
H. H. Masjuki

The optimum utilisation of CuO-nanofluid in flat plate solar collector has been investigated under Malaysian climatic condition. To determine the optimum nanoparticle concentration required in the base fluid, a simulation was carried out using MATLAB program. From the simulation, it was found that, 0.5 vol.% of CuO nanoparticles in the base fluid yielded maximum collector efficiency. The test was conducted over six months following the ASHRAE standard with nanofluid in the flat plate collector to ascertain its efficiency. The maximum average solar radiation incident on the collector, collector outlet and ambient temperatures were observed about 1000 W/m2, 50 ºC and 38 ºC respectively. From the efficiency curve, the absorbed and removed energy parameters were found to be 0.501 and 24.23 respectively. At a mass flow rate of one litre per minute, the maximum average instantaneous efficiency was 51%. The result of experimental efficiency was compared with the result of simulation and the efficiency values were within 4% of each other. CuO nanofluid base collector increases the efficiency compared to water as the collector fluid. The experimental results revealed that the efficiency of FPSC with CuO nanofluid was 4.78% higher than water base collector at the same mass flow rate of 1 L/min. The uncertainty analysis of result has shown that instantaneous efficiency uncertainty was about 3.3%. The simulation result has indeed minimised number of experiments required to determine the optimum concentration of nanofluid for maximum efficiency.


2019 ◽  
Vol 8 (3) ◽  
pp. 4177-4182

Flat plate solar collector is the major component of a solar heating system that converts solar radiation to thermal energy. It provides clean energy at no operating cost, however, its poor performance constitutes a serious drawback to adopt it for small application. This inefficiency is the result of involved thermal losses and the lack of full exploitation of the available energy. To exploit the maximum potential, the working fluid flow should be uniformly distributed through the collector to extract the heat from the hot absorbing surface. This study addresses the uniformity of the flow distribution for v-groove flat plate solar collector for water heating to optimize the performance of the collector. The study investigated the effect of the manifold geometry and the number of the side riser channels on the flow distribution by using numerical computational fluid dynamics simulation on Ansys Fluent Software. The mass flow rate was optimized for maximum thermal performance and then the optimum point was used for investigating the flow distribution. The simulation was validated against experimental data from literature with 99% confidence. The study found that the circular manifold gives uniform flow distribution with a standard deviation of 5% at the optimum mass flow rate of 11.5g/s. the study concluded that the tapered circular manifold is the optimum geometry for uniform flow distribution as it provides the least pressure difference inside the manifold.


2020 ◽  
Vol 10 ◽  
pp. 184798042096461 ◽  
Author(s):  
Omer A Alawi ◽  
Haslinda Mohamed Kamar ◽  
Hussein A Mohammed ◽  
AR Mallah ◽  
Omar A Hussein

A covalent functionalization approach was utilized for the preparation of highly dispersed pentaethylene glycol-thermally treated graphene-water as the absorbing material inside a flat-plate solar collector. Four mass fractions of nanofluids were prepared (0.025, 0.05, 0.075, and 0.1 wt% pentaethylene glycol-thermally treated graphene-water). Graphene nanoparticles were characterized by energy dispersive X-ray analysis with a scanning electron microscope. Measurements of the thermophysical properties were subsequently carried out for the nanosuspensions. The raw investigation data were collected from an indoor flat-plate solar collector test setup. The experimental procedure included different sets of variables such as input temperatures of 303, 313, and 323 K; fluid mass flow rate of 0.00833, 0.01667, and 0.025 kg s−1; and heat flow density of 500, 750, and 1000 W m−2. The thermophysical tests of pentaethylene glycol-thermally treated graphene-water nanofluids showed a proportional increase against weight concentrations, while the specific heat power was reduced. The tests showed an increment in energy efficiency by increasing the fluid mass flow rate and heat input. By comparison, the thermal efficiency decreased with the increasing temperature of the fluid supply. Relative to the base fluid, the energy efficiency of pentaethylene glycol-thermally treated graphene/water-based flat-plate solar collector increased to 10.6%, 11%, and 13.1% at the three fluid mass flow rates. In conclusion, an exponential form was used to derive the thermal effectiveness of flat-plate solar collector based on the experimental data.


2018 ◽  
Vol 8 (2) ◽  
pp. 2750-2754
Author(s):  
N. Ben Khedher

Flat plate solar water heaters are widely used for water heating in low-temperature residential applications. In this paper the thermal performance of a solar flat plate water heater under Hail weather conditions (latitude 27°52΄N longitude ‎41°69΄E) was experimentally investigated. Fluid was circulated through the imbedded copper tubes in the flat plate collector and inlet and outlet temperatures of the fluid were noted at five minute intervals. The experimental-time was between 9:00AM-15:00PM. A study was carried out experimentally to present the efficiency curves of a flat plate solar collector at different flow rates. ASHRAE standard 93-2003 was followed for calculation of instantaneous efficiency of solar collector. Result shows that the flow rate of the circulating fluid highly influence the thermal efficiency of the solar collector. Optimum flow rate of 2.5L/min leads to maximum collector efficiency.


2021 ◽  
Vol 12 (3) ◽  
pp. 061-071
Author(s):  
Samer Yassin Alsadi ◽  
Tareq Foqha

Little works considered the optimization of working fluids in solar systems. Engineers, designers and scientists are interested with the optimization problems, furthermore it is very important specially, for solar systems to improve the energetic behavior and increase their efficiencies as a conversion system of solar irradiance to a useful thermal power. According to the available literature, the criteria of optimization mainly relates to energetic and economic analysis (one of them or both). The analysis was based upon the maximum useful energy obtained from solar collector. Accordingly, the optimum mass flow rate was found aspires to infinity. The second analysis is based upon minimum cost of the unit of useful energy [$/W]. The optimum mass flow rate of solar air-heating flat-plate collector for the considered domestic solar heating system has been found 29 kg/h per square meters of solar collectors. This paper deals with a third criteria that is, the amount of the additional energy required to achieve the required task from the solar system by means of auxiliary heating system. In where both the outlet temperature and mass flow rate play crucial role in the heat exchange between the fluid in the collector loop and the fluid in the load loop.


2017 ◽  
Vol 13 (8) ◽  
pp. 6376-6380
Author(s):  
P.Michael Joseph Stalin ◽  
T.V. Arjunan ◽  
N. Sadanandam

One of the effective ways of increasing the efficiency of flat plate solar collector is to utilize nanofluids which are having high thermal conductivity. In the present study, an attempt is made to investigate the effect of mass flow rates on the performance of flat plate solar collector using CuO/water nanofluid. The experimental set up consists of flat plate solar collector; storage tank and ladder type heat exchanger. The instantaneous efficiency of solar collector is calculated by taking lower volume fraction of 0.01% with average particle size of 30 nm and varying the flow rate from 1 lpm to 3 lpm, as per ASHRAE standard, with and without Triton X-100 surfactant. The experimental results reveal that utilizing the nanofluid with mass flow rate at 1.5 lpm increases the collector efficiency by 19.7%. 


Sign in / Sign up

Export Citation Format

Share Document