scholarly journals Choosing the best Bin Packing Algorithm for Replica Placement in Multi-Tenant Cloud System

Of late, Cloud Computing is visibly seen to reduce infrastructure costs with high data availability and performance conforming to service level agreement for both the service providers and the users. With the rapid and explosive growth of the number of cloud users, Cloud Data Management System must serve an array of different analytical and transactional workloads. Hence, to ensure the scalability in a multi-tenant system, replica placement algorithms always come into the picture appropriately. In our work, we have vividly analyzed various replica placement algorithms in terms of their performance and tried to find the beneficial aspects to be the fittest one to tackle the situation when the actual observed workloads are immensely deviated from the estimated workloads.

Dynamic resource allocation of cloud data centers is implemented with the use of virtual machine migration. Selected virtual machines (VM) should be migrated on appropriate destination servers. This is a critical step and should be performed according to several criteria. It is proposed to use the criteria of minimum resource wastage and service level agreement violation. The optimization problem of the VM placement according to two criteria is formulated, which is equivalent to the well-known main assignment problem in terms of the structure, necessary conditions, and the nature of variables. It is suggested to use the Hungarian method or to reduce the problem to a closed transport problem. This allows the exact solution to be obtained in real time. Simulation has shown that the proposed approach outperforms widely used bin-packing heuristics in both criteria.


2020 ◽  
Vol 17 (1) ◽  
pp. 29-50
Author(s):  
Loiy Alsbatin ◽  
Gürcü Öz ◽  
Ali Ulusoy

Dynamic Virtual Machine (VM) consolidation is a successful approach to improve the energy efficiency and the resource utilization in cloud environments. Consequently, optimizing the online energy-performance tradeoff directly influences quality of service. In this study, algorithms named as CPU Priority based Best-Fit Decreasing (CPBFD) and Dynamic CPU Priority based Best-Fit Decreasing (DCPBFD) are proposed for VM placement. A number of VM placement algorithms are implemented and compared with the proposed algorithms. The algorithms are evaluated through simulations with real-world workload traces and it is shown that the proposed algorithms outperform the known algorithms. The simulation results clearly show that CPBFD and DCPBFD provide the least service level agreement violations, least VM migrations, and efficient energy consumption.


Author(s):  
Amandeep Kaur Sandhu ◽  
Jyoteesh Malhotra

This article describes how a rapid increase in usage of internet has emerged from last few years. This high usage of internet has occurred due to increase in popularity of multimedia applications. However, there is no guarantee of Quality of Service to the users. To fulfill the desired requirements, Internet Service Providers (ISPs) establish a service level agreement (SLA) with clients including specific parameters like bandwidth, reliability, cost, power consumption, etc. ISPs make maximum SLAs and decrease energy consumption to raise their profit. As a result, users do not get the desired services for which they pay. Virtual Software Defined Networks are flexible and manageable networks which can be used to achieve these goals. This article presents shortest path algorithm which improves the matrices like energy consumption, bandwidth usage, successful allocation of nodes in the network using VSDN approach. The results show a 40% increase in the performance of proposed algorithms with a respect to existing algorithms.


2021 ◽  
Vol 17 (2) ◽  
pp. 179-195
Author(s):  
Priyanka Bharti ◽  
Rajeev Ranjan ◽  
Bhanu Prasad

Cloud computing provisions and allocates resources, in advance or real-time, to dynamic applications planned for execution. This is a challenging task as the Cloud-Service-Providers (CSPs) may not have sufficient resources at all times to satisfy the resource requests of the Cloud-Service-Users (CSUs). Further, the CSPs and CSUs have conflicting interests and may have different utilities. Service-Level-Agreement (SLA) negotiations among CSPs and CSUs can address these limitations. User Agents (UAs) negotiate for resources on behalf of the CSUs and help reduce the overall costs for the CSUs and enhance the resource utilization for the CSPs. This research proposes a broker-based mediation framework to optimize the SLA negotiation strategies between UAs and CSPs in Cloud environment. The impact of the proposed framework on utility, negotiation time, and request satisfaction are evaluated. The empirical results show that these strategies favor cooperative negotiation and achieve significantly higher utilities, higher satisfaction, and faster negotiation speed for all the entities involved in the negotiation.


Author(s):  
Kaouthar Fakhfakh ◽  
Tarak Chaari ◽  
Said Tazi ◽  
Mohamed Jmaiel ◽  
Khalil Drira

The establishment of Service Level Agreements between service providers and clients remains a complex task regarding the uninterrupted growth of the IT market. In fact, it is important to ensure a clear and fair establishment of these SLAs especially when providers and clients do not share the same technical knowledge. To address this problem, the authors started modeling client intentions and provider offers using ontologies. These models helped them in establishing and implementing a complete semantic matching approach containing four main steps. The first step consists of generating correspondences between the client and the provider terms by assigning certainties for their equivalence. The second step corrects and refines these certainties. In the third step, the authors evaluate the matching results using inference rules, and in the fourth step, a draft version of a Service Level Agreement is automatically generated in case of compatibility.


2020 ◽  
Vol 11 (3) ◽  
pp. 22-41
Author(s):  
Akkrabani Bharani Pradeep Kumar ◽  
P. Venkata Nageswara Rao

Over the past few decades, computing environments have progressed from a single-user milieu to highly parallel supercomputing environments, network of workstations (NoWs) and distributed systems, to more recently popular systems like grids and clouds. Due to its great advantage of providing large computational capacity at low costs, cloud infrastructures can be employed as a very effective tool, but due to its dynamic nature and heterogeneity, cloud resources consuming enormous amount of electrical power and energy consumption control becomes a major issue in cloud datacenters. This article proposes a comprehensive prediction-based virtual machine management approach that aims to reduce energy consumption by reducing active physical servers in cloud data centers. The proposed model focuses on three key aspects of resource management namely, prediction-based delay provisioning; prediction-based migration, and resource-aware live migration. The comprehensive model minimizes energy consumption without violating the service level agreement and provides the required quality of service. The experiments to validate the efficacy of the proposed model are carried out on a simulated environment, with varying server and user applications and parameter sizes.


Author(s):  
Tapati Bandopadhyay ◽  
Pradeep Kumar

The concept of presence was initially associated with an instant messaging service, allowing an end user to recognize the presence of a peer online to send or receive messages. Now the technology has grown up to include various services like monitoring performance of any type of end user device, and services are accessible from anywhere, any time. The need for enhanced value remains the driving force behind these services, for example, Voice over Internet Protocol (VoIP) services, which is drawing tremendous research interest in services performance evaluation, measurement, benchmarking, and monitoring. Monitoring service level parameters happens to be one of the most interesting application-oriented research issues because various service consumers at the customer companies/end users’ level are finding it very difficult to design and monitor an effective SLA (Service Level Agreement) with the presence-enabled service providers. This chapter focuses on to these specific issues and presents a new approach of SLA monitoring through Data Envelopment Analysis (DEA). This extreme point approach actually can work much better in the context of SLA monitoring than general central-tendency-based statistical tools, a fact which has been corroborated by similar application examples of DEA presented in this chapter and has therefore it acts as the primary motivation to propose this new approach. Towards this end, this chapter first builds up the context of presence-enabled services (Day, Rosenburg, & Sugano, 2000), its SLA and SLA parameters, and the monitoring requirements. Then it explains the basics of DEA and its application in various other engineering and services context. Ultimately, a DEA application framework for monitoring an SLA of presence-enabled services is proposed which can serve as a clear guideline for the customers of presence-enabled services, not only for SLA monitoring but also at various other stages of implementing presence-enabled services frameworks. This approach exploits the definitive suitability of the application of DEA methods to presence-enabled service monitoring problems, and can be easily implemented by the industry practitioners.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 852 ◽  
Author(s):  
Sajid Latif ◽  
Syed Mushhad Gilani ◽  
Rana Liaqat Ali ◽  
Misbah Liaqat ◽  
Kwang-Man Ko

The interconnected cloud (Intercloud) federation is an emerging paradigm that revolutionizes the scalable service provision of geographically distributed resources. Large-scale distributed resources require well-coordinated and automated frameworks to facilitate service provision in a seamless and systematic manner. Unquestionably, standalone service providers must communicate and federate their cloud sites with other vendors to enable the infinite pooling of resources. The pooling of these resources provides uninterpretable services to increasingly growing cloud users more efficiently, and ensures an improved Service Level Agreement (SLA). However, the research of Intercloud resource management is in its infancy. Therefore, standard interfaces, protocols, and uniform architectural components need to be developed for seamless interaction among federated clouds. In this study, we propose a distributed meta-brokering-enabled scheduling framework for provision of user application services in the federated cloud environment. Modularized architecture of the proposed system with uniform configuration in participating resource sites orchestrate the critical operations of resource management effectively, and form the federation schema. Overlaid meta-brokering instances are implemented on the top of local resource brokers to keep the global functionality isolated. These instances in overlay topology communicate in a P2P manner to maintain decentralization, high scalability, and load manageability. The proposed framework has been implemented and evaluated by extending the Java-based CloudSim 3.0.3 simulation application programming interfaces (APIs). The presented results validate the proposed model and its efficiency to facilitate user application execution with the desired QoS parameters.


Sign in / Sign up

Export Citation Format

Share Document