scholarly journals 25GHz - 40GHz Circularly Phase Array Microstrip Patch Antenna for Millimeter Wave Communication

Millimeter wave technology will enable to provide high data rate. It is also expected to provide continuous good quality, low latency video. For high-resolution video, wireless communication will require huge bandwidth. The present 4G spectrum will be unable to meet the demand of each mobile user. To solve bandwidth shortage millimeter wave technology is consider. In this paper present a circularly phase array designed. It is operating in the 25GHz to 40GHz. To enhance bandwidth the array used edge couple parasitic patch arrangement which provides dual resonance. The array is designed in circular phase array with the rotational feeding line. The designed used polyflon CuFlon(tm) low dielectric constant, Ɛr = 2.1 and tangential loss, δ = 0.00045 with height h = 1.6mm. The designed achieved 8.41dB gain. The array achieved good return loss, S11 bandwidth i.e. -11.83dB ≤ S11 ≤ -37.8dB (25GHz to 40GHz) and voltage standing wave ratio, VSWR ≤ 1.7 (25GHz to 40GHz).

2011 ◽  
Vol 2011 (1) ◽  
pp. 000544-000552
Author(s):  
Deepukumar M. Nair ◽  
James Parisi ◽  
K.M. Nair ◽  
Mark McCombs ◽  
Michael Smith ◽  
...  

Low Temperature Co-fired Ceramic (LTCC) material systems have been successfully used in microwave and millimeter wave systems for several years. LTCC has very low dielectric loss, high reliability due to inherent hermeticity; high interconnect density, multilayer processing capability leading to true 3D packaging, and better cost-performance balance. While the medium range dielectric constants (7.00 – 8.00) offered by current tape systems have advantages, it is generally difficult to realize high speed systems and efficient antennas on LTCC, especially at millimeter wave frequencies. The difficulty arises from the reduced signal propagation velocity in high-speed applications, and lower radiation efficiency for antennas, both due to higher dielectric constant. To enable and extend applications of LTCC technology to these subsystems, DuPont has developed a new low dielectric constant LTCC system – DuPont™ GreenTape™ 9K5 - which has a dielectric constant of 5.80 (at 10 GHz) that is compatible with the commercial DuPont™ GreenTape™ 9K7 LTCC System. This is achieved without compromising excellent microwave loss properties of the 9KX GreenTape™ platform. These materials systems enable high-speed, high reliability applications while also realizing efficient antennas on LTCC. This paper presents initial characterization of the new DuPont™ GreenTape™ 9K5 LTCC system consisting of low K dielectric tape, gold and silver conductors to evaluate the effects of chemistry, processing conditions, processing latitude, microstructure, and microwave performance. Test coupons with various transmission and resonating structures are designed, fabricated, and tested for the evaluation of transmission losses and dielectric properties. Stability of the material system over multiple re-fire steps is also examined


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Guilherme Volpe Bossa ◽  
Sylvio May

Poisson–Boltzmann theory provides an established framework to calculate properties and free energies of an electric double layer, especially for simple geometries and interfaces that carry continuous charge densities. At sufficiently small length scales, however, the discreteness of the surface charges cannot be neglected. We consider a planar dielectric interface that separates a salt-containing aqueous phase from a medium of low dielectric constant and carries discrete surface charges of fixed density. Within the linear Debye-Hückel limit of Poisson–Boltzmann theory, we calculate the surface potential inside a Wigner–Seitz cell that is produced by all surface charges outside the cell using a Fourier-Bessel series and a Hankel transformation. From the surface potential, we obtain the Debye-Hückel free energy of the electric double layer, which we compare with the corresponding expression in the continuum limit. Differences arise for sufficiently small charge densities, where we show that the dominating interaction is dipolar, arising from the dipoles formed by the surface charges and associated counterions. This interaction propagates through the medium of a low dielectric constant and alters the continuum power of two dependence of the free energy on the surface charge density to a power of 2.5 law.


Sign in / Sign up

Export Citation Format

Share Document