Introducing DuPont™ GreenTape™ 9K5 Low Dielectric Constant, Low Temperature Co-Fired Ceramic (LTCC) Tape System

2011 ◽  
Vol 2011 (1) ◽  
pp. 000544-000552
Author(s):  
Deepukumar M. Nair ◽  
James Parisi ◽  
K.M. Nair ◽  
Mark McCombs ◽  
Michael Smith ◽  
...  

Low Temperature Co-fired Ceramic (LTCC) material systems have been successfully used in microwave and millimeter wave systems for several years. LTCC has very low dielectric loss, high reliability due to inherent hermeticity; high interconnect density, multilayer processing capability leading to true 3D packaging, and better cost-performance balance. While the medium range dielectric constants (7.00 – 8.00) offered by current tape systems have advantages, it is generally difficult to realize high speed systems and efficient antennas on LTCC, especially at millimeter wave frequencies. The difficulty arises from the reduced signal propagation velocity in high-speed applications, and lower radiation efficiency for antennas, both due to higher dielectric constant. To enable and extend applications of LTCC technology to these subsystems, DuPont has developed a new low dielectric constant LTCC system – DuPont™ GreenTape™ 9K5 - which has a dielectric constant of 5.80 (at 10 GHz) that is compatible with the commercial DuPont™ GreenTape™ 9K7 LTCC System. This is achieved without compromising excellent microwave loss properties of the 9KX GreenTape™ platform. These materials systems enable high-speed, high reliability applications while also realizing efficient antennas on LTCC. This paper presents initial characterization of the new DuPont™ GreenTape™ 9K5 LTCC system consisting of low K dielectric tape, gold and silver conductors to evaluate the effects of chemistry, processing conditions, processing latitude, microstructure, and microwave performance. Test coupons with various transmission and resonating structures are designed, fabricated, and tested for the evaluation of transmission losses and dielectric properties. Stability of the material system over multiple re-fire steps is also examined

1994 ◽  
Vol 372 ◽  
Author(s):  
David W. Kellerman

AbstractHigh speed interconnects for semiconductor devices require low dielectric constant materials to minimize propagation delays and capacitive line loading. Ceramics and thick film materials have been utilized to package these semiconductor devices, however their dielectric constants are prohibitively high. Hollow microspheres have been added to thick film glass and ceramic composite materials to lower the dielectric constant of those materials. This paper will review papers presented on the work done at Digital Equipment Corporation and EMCA-Remex to develop high speed integrated circuit packages with low dielectric constants.Presented will be the development and characterization of the low dielectric constant thick film material, processes used to fabricate devices with the low dielectric constant material, and development of the application of the material to an advanced ceramic integrated circuit package.


2000 ◽  
Vol 617 ◽  
Author(s):  
Ian W. Boyd ◽  
Jun-Ying Zhang

AbstractIn this paper, UV-induced large area growth of high dielectric constant (Ta2O5, TiO2and PZT) and low dielectric constant (polyimide and porous silica) thin films by photo-CVD and sol-gel processing using excimer lamps, as well as the effect of low temperature LW annealing, are discussed. Ellipsometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV spectrophotometry, atomic force microscope (AFM), capacitance-voltage (C-V) and current-voltage (I-V) measurements have been employed to characterize oxide films grown and indicate them to be high quality layers. Leakage current densities as low as 9.0×10−8 Acm−2 and 1.95×10−7 Acm−2 at 0.5 MV/cm have been obtained for the as-grown Ta2O5 films formed by photo-induced sol-gel processing and photo-CVD. respectively - several orders of magnitude lower than for any other as-grown films prepared by any other technique. A subsequent low temperature (400°C) UV annealing step improves these to 2.0×10−9 Acm−2 and 6.4× 10−9 Acm−2, respectively. These values are essentially identical to those only previously formed for films annealed at temperatures between 600 and 1000°C. PZT thin films have also been deposited at low temperatures by photo-assisted decomposition of a PZT metal-organic sol-gel polymer using the 172 nm excimer lamp. Very low leakage current densities (10−7 A/cm2) can be achieved, which compared with layers grown by conventional thermal processing. Photo-induced deposition of low dielectric constant organic polymers for interlayer dielectrics has highlighted a significant role of photo effects on the curing of polyamic acid films. I-V measurements showed the leakage current density of the irradiated polymer films was over an order of magnitude smaller than has been obtained in the films prepared by thermal processing. Compared with conventional furnace processing, the photo-induced curing of the polyimide provided both reduced processing time and temperature, A new technique of low temperature photo-induced sol-gel process for the growth of low dielectric constant porous silicon dioxide thin films from TEOS sol-gel solutions with a 172 nm excimer lamp has also been successfully demonstrated. The dielectric constant values as low as 1.7 can be achieved at room temperature. The applications investigated so far clearly demonstrate that low cost high power excimer lamp systems can provide an interesting alternative to conventional UV lamps and excimer lasers for industrial large-scale low temperature materials processing.


1997 ◽  
Vol 12 (10) ◽  
pp. 2743-2750 ◽  
Author(s):  
Jau-Ho Jean ◽  
Chia-Ruey Chang

Camber (curvature) development during cofiring a two-layered structure of Ag film/low-dielectric-constant, low-temperature cofired ceramic (LTCC) green tape has been investigated. At a given thickness of Ag film, both the camber and camber rate decrease linearly with increasing the square thickness of LTCC. Densification mismatch between Ag and LTCC is attributed to be the root cause for the camber generation during cofiring. Mathematical analysis is made to theoretically describe the camber development, and the results show a fairly good agreement with experimental observations.


2018 ◽  
Vol 31 (8) ◽  
pp. 986-995
Author(s):  
Lei Wang ◽  
Guifen Gong ◽  
Junyao Shen ◽  
Jinsong Leng

Polyimide (PI)/titanium dioxide (TiO2) composite nanofibers (NFs) with average diameters of 200–250 nm were synthesized via electrospinning. The total number density of dipoles decreased significantly, owing to the porous structures and compact interface between TiO2 NPs and PI matrix. All PI/TiO2 NFs maintain low dielectric constants and losses. For example, the dielectric constants of PI/TiO2-6% NFs are all lower than 2.6, being exposed to temperatures from 25°C to 200°C. Meantime, the dielectric losses of PI/TiO2-6% NFs are below 0.005. For ultraviolet (UV)-light shielding performance, the PI/TiO2 NFs exhibited good UV-light shielding and corresponding anti-photoaging properties. The reason can be ascribed from high UV-light absorption and scattering ability in the TiO2 NPs. The best UV-light absorption (average: 3.71) and corresponding absorption decay (15.13%) were achieved for optimized PI/TiO2-6% NFs. Other fundamental characteristics, such as the thermal stability, mechanical tensile property, and hydrophobicity, were also investigated. Such low dielectric constant PI/TiO2 composite NFs can be alternatively chosen under a longtime UV-light exposing condition.


1986 ◽  
Vol 72 ◽  
Author(s):  
G. V. Chandrashekhar ◽  
M. W. Shafer

AbstractDielectric properties have been measured for a series of porous and fully densified silica glasses, prepared by the sol-gel technique starting from Si-methoxide or Si-fume. The results for the partially densified glasses do not show any preferred orientation for porosity. When fully densified (˜2.25 gms/cc) without any prior treatment of the gels, they have dielectric constants of ≥ 6.5 and loss factors of 0.002 at 1 MHz, compared to values of 3.8 and <0.001 for commercial fused silica. There is no corresponding anomaly in the d.c. resistivity. Elemental carbon present to the extent of 400–500 ppm is likely to be the main cause for this enhanced dielectric constant. Extensive cleaning of the gels prior to densification to remove this carbon were not completely successful pointing to the difficulty in preparing high purity, low dielectric constant glasses via the organic sol-gel route at least in the bulk form.


1999 ◽  
Vol 565 ◽  
Author(s):  
T. Aoki ◽  
Y Shimizu ◽  
T. Kikkawa

AbstractA novel spin on material derived from perhydropolysilazane that converts into ultra-low k inorganic films is described in this paper. The obtained films, cured at 400°C in N2 atmosphere, exhibit dielectric constants as low as 1.6 which do not change after holding the wafers in a clean-room mbient for 2 months. Cross-sectional SEM images of the cured films show the aggregation of small granules with diameters ranging from 5 to 30 nm. The films can be obtained by conventional SOG process: spin-coating, baking and curing, without any additional process such as hydrophobic treatment.The average atomic compositions of the films are, Si/O/N/C = 40/55/5/0.5 (atomic %), by XPS analysis. These results indicate that the films have hydrogen silicon oxynitride structures. No evolution of H2O and NH3 was detected by TDS analysis in the temperature range of RT to 800°C. Hydrophobic Si-H and Si-H2 groups remaining in the film might prevent water absorption, resulting in the low dielectric constant.The remainder of Si-H and Si-H2 constituents in the cured films is the result of selective oxidation reactions of perhydropolysilazane in the baking process with the use of a specific catalyst. The structures of the films are tailored by altering the amount of the catalyst. In this study, we also demonstrate the relationship between the effect of the catalyst and the film properties.


1970 ◽  
Vol 23 (5) ◽  
pp. 905 ◽  
Author(s):  
PJ Pearce ◽  
W Strauss

The electrolytic conductance of solutions of potassium chloride and tetrabutyl- ammonium picrate over a range of concentrations have been measured in dioxan-water mixtures containing 0, 25, 50, 70, and 80% dioxan at 25� and pressures up to 1000 and 2500 bars respectively for the two solutes. The solvent concentration range corresponds to a range of dielectric constants of 78.3 (for water) to 11.98 (80% dioxan). The association of KCl in solutions of low dielectric constant is reduced by increasing pressure, so that the conductances of the solutions of finite concentration are not reduced as much by pressure as at infinite dilution. In contrast to this, the solutions of the tetrabutylammonium picrate are wholly dissociated even in very low dielectric constant solvents, as is shown by the limited concentration dependence of the conductance pressure characteristics.


1995 ◽  
Vol 390 ◽  
Author(s):  
C. P. Wong

ABSTRACTA modem VLSI device is a complicated three-dimensional structure that consists of multilayer metallization conductor lines which are separated with interlayer-dielectrics as insulation. This VLSI technology drives the IC device into sub-micron feature size that operates at ultra-fast speed (in excess of > 100 MHz). Passivation and interlayer dielectric materials are critical to the device performance due to the conductor signal propagation delay of the high dielectric constant of the material. Low dielectric constant materials are the preferred choice of materials for this reasons. These materials, such as Teflon® and siloxanes (silicones), are desirable because of their low dielectric constant (∈1) = 2.0, 2.7, respectively. This paper describes the use of a low dielectric constant siloxane polymer (silicone) as IC devices passivation layer material, its chemistry, material processes and reliability testing.


2012 ◽  
Vol 262 ◽  
pp. 448-453 ◽  
Author(s):  
Jian Yong Lv ◽  
Yan Meng ◽  
Li Fan He ◽  
Teng Qiu ◽  
Xiao Yu Li ◽  
...  

A novel fluorine containing epoxy 4-fluoro-4′,4″-diepoxypropoxy triphenyl methane (FDE) was designed and synthesized. The synthesized epoxy was cured by methyl nadic anhydride (MNA) and diglycidyl ether of bisphenol A (DGEBA) was chosen for comparison. Both glass transfer temperature (Tg) and 5% weight loss degradation temperature (Td5%) of cured FDE are over 60°C higher than that of DGEBA. Dielectric constants of the cured FDE at 106 Hz and 107 Hz are 3.09 and 2.91, comparing to 3.50 and 3.24 of the cured DGEBA, respectively. Furthermore, water absorption of the cured FDE is lower than that of DGBEA.


Sign in / Sign up

Export Citation Format

Share Document