scholarly journals Region of Interest Prediction using Segmentation

Segmentation separates an image into different sections badsed on the desire of the user. Segmentation will be carried out in an image, until the region of interest (ROI) of an object is extracted. Segmentation reliability predicts the progress of the various segmentation techniques. In this paper, various segmentation methods are proposed and quality of segmentation is verified by using quality metrics like Mean Squared Error (MSE),Signal to Noise Ratio (SNR), Peak- Signal to Noise Ratio (PSNR), Edge Preservation Index (EPI) and Structural Similarity Index Metric (SSIM).

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5540
Author(s):  
Nayeem Hasan ◽  
Md Saiful Islam ◽  
Wenyu Chen ◽  
Muhammad Ashad Kabir ◽  
Saad Al-Ahmadi

This paper proposes an encryption-based image watermarking scheme using a combination of second-level discrete wavelet transform (2DWT) and discrete cosine transform (DCT) with an auto extraction feature. The 2DWT has been selected based on the analysis of the trade-off between imperceptibility of the watermark and embedding capacity at various levels of decomposition. DCT operation is applied to the selected area to gather the image coefficients into a single vector using a zig-zig operation. We have utilized the same random bit sequence as the watermark and seed for the embedding zone coefficient. The quality of the reconstructed image was measured according to bit correction rate, peak signal-to-noise ratio (PSNR), and similarity index. Experimental results demonstrated that the proposed scheme is highly robust under different types of image-processing attacks. Several image attacks, e.g., JPEG compression, filtering, noise addition, cropping, sharpening, and bit-plane removal, were examined on watermarked images, and the results of our proposed method outstripped existing methods, especially in terms of the bit correction ratio (100%), which is a measure of bit restoration. The results were also highly satisfactory in terms of the quality of the reconstructed image, which demonstrated high imperceptibility in terms of peak signal-to-noise ratio (PSNR ≥ 40 dB) and structural similarity (SSIM ≥ 0.9) under different image attacks.


2014 ◽  
Vol 2 (2) ◽  
pp. 47-58
Author(s):  
Ismail Sh. Baqer

A two Level Image Quality enhancement is proposed in this paper. In the first level, Dualistic Sub-Image Histogram Equalization DSIHE method decomposes the original image into two sub-images based on median of original images. The second level deals with spikes shaped noise that may appear in the image after processing. We presents three methods of image enhancement GHE, LHE and proposed DSIHE that improve the visual quality of images. A comparative calculations is being carried out on above mentioned techniques to examine objective and subjective image quality parameters e.g. Peak Signal-to-Noise Ratio PSNR values, entropy H and mean squared error MSE to measure the quality of gray scale enhanced images. For handling gray-level images, convenient Histogram Equalization methods e.g. GHE and LHE tend to change the mean brightness of an image to middle level of the gray-level range limiting their appropriateness for contrast enhancement in consumer electronics such as TV monitors. The DSIHE methods seem to overcome this disadvantage as they tend to preserve both, the brightness and contrast enhancement. Experimental results show that the proposed technique gives better results in terms of Discrete Entropy, Signal to Noise ratio and Mean Squared Error values than the Global and Local histogram-based equalization methods


2020 ◽  
Vol 25 (2) ◽  
pp. 86-97
Author(s):  
Sandy Suryo Prayogo ◽  
Tubagus Maulana Kusuma

DVB merupakan standar transmisi televisi digital yang paling banyak digunakan saat ini. Unsur terpenting dari suatu proses transmisi adalah kualitas gambar dari video yang diterima setelah melalui proses transimisi tersebut. Banyak faktor yang dapat mempengaruhi kualitas dari suatu gambar, salah satunya adalah struktur frame dari video. Pada tulisan ini dilakukan pengujian sensitifitas video MPEG-4 berdasarkan struktur frame pada transmisi DVB-T. Pengujian dilakukan menggunakan simulasi matlab dan simulink. Digunakan juga ffmpeg untuk menyediakan format dan pengaturan video akan disimulasikan. Variabel yang diubah dari video adalah bitrate dan juga group-of-pictures (GOP), sedangkan variabel yang diubah dari transmisi DVB-T adalah signal-to-noise-ratio (SNR) pada kanal AWGN di antara pengirim (Tx) dan penerima (Rx). Hasil yang diperoleh dari percobaan berupa kualitas rata-rata gambar pada video yang diukur menggunakan metode pengukuran structural-similarity-index (SSIM). Dilakukan juga pengukuran terhadap jumlah bit-error-rate BER pada bitstream DVB-T. Percobaan yang dilakukan dapat menunjukkan seberapa besar sensitifitas bitrate dan GOP dari video pada transmisi DVB-T dengan kesimpulan semakin besar bitrate maka akan semakin buruk nilai kualitas gambarnya, dan semakin kecil nilai GOP maka akan semakin baik nilai kualitasnya. Penilitian diharapkan dapat dikembangkan menggunakan deep learning untuk memperoleh frame struktur yang tepat di kondisi-kondisi tertentu dalam proses transmisi televisi digital.


2019 ◽  
Vol 829 ◽  
pp. 252-257
Author(s):  
Azhari ◽  
Yohanes Hutasoit ◽  
Freddy Haryanto

CBCT is a modernized technology in producing radiograph image on dentistry. The image quality excellence is very important for clinicians to interpret the image, so the result of diagnosis produced becoming more accurate, appropriate, thus minimizing the working time. This research was aimed to assess the image quality using the blank acrylic phantom polymethylmethacrylate (PMMA) (C­5H8O2)n in the density of 1.185 g/cm3 for evaluating the homogeneity and uniformity of the image produced. Acrylic phantom was supported with a tripod and laid down on the chin rest of the CBCT device, then the phantom was fixed, and the edge of the phantom was touched by the bite block. Furthermore, the exposure of the X-ray was executed toward the acrylic phantom with various kVp and mAs, from 80 until 90, with the range of 5 kV and the variation of mA was 3, 5, and 7 mA respectively. The time exposure was kept constant for 25 seconds. The samples were taken from CBCT acrylic images, then as much as 5 ROIs (Region of Interest) was chosen to be analyzed. The ROIs determination was analyzed by using the ImageJ® software for recognizing the influence of kVp and mAs towards the image uniformity, noise and SNR. The lowest kVp and mAs had the result of uniformity value, homogeneity and signal to noise ratio of 11.22; 40.35; and 5.96 respectively. Meanwhile, the highest kVp and mAs had uniformity value, homogeneity and signal to noise ratio of 16.96; 26.20; and 5.95 respectively. There were significant differences between the image uniformity and homogeneity on the lowest kVp and mAs compared to the highest kVp and mAs, as analyzed with the ANOVA statistics analysis continued with the t-student post-hoc test with α = 0.05. However, there was no significant difference in SNR as analyzed with the ANOVA statistic analysis. The usage of the higher kVp and mAs caused the improvement of the image homogeneity and uniformity compared to the lower kVp and mAs.


Author(s):  
Jelena Vlaović ◽  
Drago Žagar ◽  
Snježana Rimac-Drlje ◽  
Mario Vranješ

With the development of Video on Demand applications due to the availability of high-speed internet access, adaptive streaming algorithms have been developing and improving. The focus is on improving user’s Quality of Experience (QoE) and taking it into account as one of the parameters for the adaptation algorithm. Users often experience changing network conditions, so the goal is to ensure stable video playback with satisfying QoE level. Although subjective Video Quality Assessment (VQA) methods provide more accurate results regarding user’s QoE, objective VQA methods cost less and are less time-consuming. In this article, nine different objective VQA methods are compared on a large set of video sequences with various spatial and temporal activities. VQA methods used in this analysis are: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), MultiScale Structural Similarity Index (MS-SSIM), Video Quality Metric (VQM), Mean Sum of Differences (DELTA), Mean Sum of Absolute Differences (MSAD), Mean Squared Error (MSE), Netflix Video Multimethod Assessment Fusion (Netflix VMAF) and Visual Signal-to-Noise Ratio (VSNR). The video sequences used for testing purposes were encoded according to H.264/AVC with twelve different target coding bitrates, at three different spatial resolutions (resulting in a total of 190 sequences). In addition to objective quality assessment, subjective quality assessment was performed for these sequences. All results acquired by objective VQA methods have been compared with subjective Mean Opinion Score (MOS) results using Pearson Linear Correlation Coefficient (PLCC). Measurement results obtained on a large set of video sequences with different spatial resolutions show that VQA methods like SSIM and VQM correlate better with MOS results compared to PSNR, SSIM, VSNR, DELTA, MSE, VMAF and MSAD. However, the PLCC results for SSIM and VQM are too low (0.7799 and 0.7734, respectively), for the usage of these methods in streaming services instead of subjective testing. These results suggest that more efficient VQA methods should be developed to be used in streaming testing procedures as well as to support the video segmentation process. Furthermore, when comparing results obtained for different spatial resolutions, it can be concluded that the quality of video sequences encoded at lower spatial resolutions in cases of lower target coding bitrate is higher compared to the quality of video sequences encoded at higher spatial resolutions at the same target coding bitrate, particularly when video sequences with higher spatial and temporal information are used.


Thyroid ultrasonography is the most common and extremely useful, safe, and cost effective way to image the thyroid gland and its pathology. However, an inherent characteristic of Ultrasound (US) imaging is the presence of multiplicative speckle noise. Speckle noise reduces the ability of an observer to distinguish fine details, make diagnosis more difficult. It limits the effective implementation of image analysis steps such as edge detection, segmentation and classification. The main objective of this study is to compare the performance of various spatial and frequency domain filters so as to identify efficient and optimum filter for de-speckling Thyroid US images. The performance of these filters is evaluated using the image quality assessment parameters Signal to Noise Ratio (SNR), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Square Error (MSE) and Root Mean Square Error (RMSE) for different speckle variance. Experimental work revealed that kuan filter resulted in higher PSNR, SNR, SSIM and least MSE, RMSE values compared to other filters


2019 ◽  
Vol 9 (3) ◽  
pp. 4188-4195
Author(s):  
N. Diffellah ◽  
Z. E. Baarir ◽  
F. Derraz ◽  
A. Taleb-Ahmed

In this paper, we focus on a globally variational method to restore noisy images corrupted by multiplicative gamma noise. Our problem is assumed as a regularization problem in total variation (TV) framework with data fitting term which is deduced by maximizing the a-posteriori probability density (MAP estimation). We need to evaluate the proximal operator of a data fitting term then we numerically adapt the Douglas-Rachford (DR) splitting method to solve the problem. Our experiments use real images with different levels of noise. To validate the effectiveness of the proposed method, we compare the proposed method with other variational models. Our method shows effective suppression of noise, excellent edge preservation, and the measures of image quality such as PSNR (peak signal-to-noise ratio), VSNR (visual signal-to-noise ratio) and SSIM (structural similarity index) explain the proposed model΄s good performance.


2019 ◽  
Vol 11 (11) ◽  
pp. 1125-1133
Author(s):  
Munmun Mondal ◽  
Md. Rafiqul Islam

Fingerprint is becoming the part of our day to day life right from our home to workplace. Now a days for security and safety purpose prime importance is given by it. Also, Fingerprint identification is one of the most popular biometric technologies and which is highly used in criminal investigations, commercial applications, and so on. The performance of a fingerprint image-matching algorithm depends heavily on the quality of the input fingerprint images. It is very important to acquire good quality images. The use of wavelet transform improves the quality of an image and reduces noise level. So, in this research, different compression techniques are used to overcome this problem. Also, we have used different wavelets transformation for compression of fingerprint images. Image quality before compression and after compression are measured by Mean Squared Error (MSE), Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR). This work is done in MATLAB using DSP and wavelet toolbox. At last, we have compared the filtered noise image method and the compression filtered noise image method.


2021 ◽  
Vol 11 (8) ◽  
pp. 2153-2166
Author(s):  
Nurshafira Hazim Chan ◽  
Khairunnisa Hasikin ◽  
Nahrizul Adib Kadri ◽  
Mokhzaini Azizan ◽  
Muzammil B. Jusoh

Mammography has been known worldwide as the most common imaging modalities utilized for early detection of breast cancer. The mammographic images produced are in greyscale, however they often produced low contrast images, contain artefacts and noise, as well as non-uniform illumination. These limitations can be overcame in the pre-processing stage with the image enhancement process. Therefore, in this research we developed an optimized enhancement framework where the local contrast factor is manipulated to preserve details of the image. This method aims to improve the overall image visibility without altering histogram of the original image, which will affect the segmentation and classification processes. We performed dark background removal in the image histogram at early stage to increase the efficiency of new mean histogram calculation. Then, the histogram is separated into two partitions to allow histogram clipping process to be conducted individually for underexposed and overexposed areas. Consequently, the local contrast factor optimization is conducted to preserve the image details. The results from our proposed method are compared with other methods by the measurement of peak signal-to-noise ratio, structural similarity index, average contrast, and average entropy difference. The results portrayed that our proposed method yield better quality over the others with highest peak signal-to-noise ratio of 32.676. In addition, in terms of qualitative analysis, our proposed method depicted better lesion segmentation with smoother shape of the lesion.


Sign in / Sign up

Export Citation Format

Share Document