scholarly journals Mathematical Modelling of Material Removal Rate and Diameter of Overcut for Sodalime glass through Pressurized Flow ECDM Process by Response Surface Methodology

The effect of electrolyte concentration, voltage, duty factor and electrolyte flow rate on material removal rate (MRR) and diameter of overcut (DOC) of the micro-hole machining of sodalime has been studied. The experimental values changed with the theoretical calculation in the range of 3 – 10 %. This mathematical model showed that decreasing electrolytic concentration reduces MRR and DOC. Pressurized flow Electrochemical Discharge Machining (pf-ECDM) can meet these differences. In order to put this phenomenon to use many experiments were experimented to machine holes on glass. Since parameters like electrolyte concentration, voltage, duty factor and electrolyte flow rate play an important role in MRR and DOC it needs to be calculated in order to improve the capability of this technology in machining difficult and high aspect ratio features. A mathematical model has been extensively developed to know the role of electrolyte concentration, voltage, duty factor and electrolyte flow in MRR and DOC of the process. However, machining excessive component ratio elements on ceramics like glass stays an ambitious challenge due to overcut. Although, electrical discharge machining (EDM) and electrochemical machining (ECM) are properly set up non-traditional strategies to meet these challenges, they are restrained to electrically conductive materials. In order to execute functionalities like excessive power and sustainability with minimal use of space, the raw substances used need to possess desirable mechanical, chemical and physical properties. Experimental research has been conducted, and the model was proven below various machining parameters. Demand for miniaturized merchandise is ever growing as they accomplish the venture of supplying the preferred functionalities with high efficiency using minimalistic raw material. These researches proved that growing the voltage in pf-ECDM plays a primary function in growing the MRR of the machined features.

2014 ◽  
Vol 6 ◽  
pp. 624203 ◽  
Author(s):  
Iman Zohourkari ◽  
Mehdi Zohoor ◽  
Massimiliano Annoni

The effects of the main operational machining parameters on the material removal rate (MRR) in abrasive waterjet turning (AWJT) are presented in this paper using a statistical approach. The five most common machining parameters such as water pressure, abrasive mass flow rate, cutting head traverse speed, workpiece rotational speed, and depth of cut have been put into a five-level central composite rotatable experimental design (CCRD). The main effects of parameters and the interaction among them were analyzed by means of the analysis of variance (ANOVA) and the response surfaces for MRR were obtained fitting a second-order polynomial function. It has been found that depth of cut and cutting head traverse speed are the most influential parameters, whereas the rotational speed is insignificant. In addition, the investigations show that interactions between traverse speed and pressure, abrasive mass flow rate and depth of cut, and pressure and depth of cut are significant on MRR. This result advances the AWJT state of the art. A complete model discussion has been reported drawing interesting considerations on the AWJT process characterising phenomena, where parameters interactions play a fundamental role.


2017 ◽  
Vol 12 (4) ◽  
pp. 72-80 ◽  
Author(s):  
Abbas Fadhil Ibrahim

Electrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel.  Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Signal-to-noise (S/N), the analysis of variance (ANOVA) was employed to find the optimal levels and to analyze the effect of electrochemical machining parameters on Ra and MRR. The surface roughness of the workpiece was decreased with the increase in current values and electrolyte concentration while causing an increase in material removal rate. The ability of the independent values to predict the dependent values (R2) were 87.5% and 96.3% for mean surface roughness and material removal rate, respectively.


1995 ◽  
Vol 117 (2) ◽  
pp. 142-151 ◽  
Author(s):  
Z. J. Pei ◽  
D. Prabhakar ◽  
P. M. Ferreira ◽  
M. Haselkorn

An approach to modeling the material removal rate (MRR) during rotary ultrasonic machining (RUM) of ceramics is proposed and applied to predicting the MRR for the case of magnesia stabilized zirconia. The model, a first attempt at predicting the MRR in RUM, is based on the assumption that brittle fracture is the primary mechanism of material removal. To justify this assumption, a model parameter (which models the ratio of the fractured volume to the indented volume of a single diamond particle) is shown to be invariant for most machining conditions. The model is mechanistic in the sense that this parameter can be observed experimentally from a few experiments for a particular material and then used in prediction of MRR over a wide range of process parameters. This is demonstrated for magnesia stabilized zirconia, where very good predictions are obtained using an estimate of this single parameter. On the basis of this model, relations between the material removal rate and the controllable machining parameters are deduced. These relationships agree well with the trends observed by experimental observations made by other investigators.


2014 ◽  
Vol 592-594 ◽  
pp. 516-520 ◽  
Author(s):  
Basil Kuriachen ◽  
Jose Mathew

Micro EDM milling process is accruing a lot of importance in micro fabrication of difficult to machine materials. Any complex shape can be generated with the help of the controlled cylindrical tool in the pre determined path. Due to the complex material removal mechanism on the tool and the work piece, a detailed parametric study is required. In this study, the influence of various process parameters on material removal mechanism is investigated. Experiments were planned as per Response Surface Methodology (RSM) – Box Behnken design and performed under different cutting conditions of gap voltage, capacitance, electrode rotation speed and feed rate. Analysis of variance (ANOVA) was employed to identify the level of importance of machining parameters on the material removal rate. Maximum material removal rate was obtained at Voltage (115V), Capacitance (0.4μF), Electrode rotational Speed (1000rpm), and Feed rate (18mm/min). In addition, a mathematical model is created to predict the material removal


2015 ◽  
Vol 787 ◽  
pp. 406-410
Author(s):  
S. Santosh ◽  
S. Javed Syed Ibrahim ◽  
P. Saravanamuthukumar ◽  
K. Rajkumar ◽  
K.L. Hari Krishna

Magnesium alloys are used in many applications, particularly in orthopaedic implants are very difficult to machine by conventional processes because of their complex 3D structure and limited slip system at room temperature. Hence there is an inherent need for alternative processes for machining such intricate profiles. Electric Discharge Machining is growing rapidly in tool rooms, die shops and even in general shop floors of modern industries to facilitate complex machining for difficult-to-machine materials and provide better surface integrity. Therefore, the use of electric discharge machining on ZM21 magnesium alloy is attempted in this paper. Nanographite powder is added for machining zone to enhance the electrical conductivity of EDM oil by way it improves the machining performance. Machining parameters such as the current, pulse on time and pulse off time were process parameters to explore their effects on the material removal rate and tool wear rate. It is observed that, an increased material removal rate was due to the enhanced electrical and thermal conductivity of the EDM oil.


2010 ◽  
Vol 44-47 ◽  
pp. 335-339
Author(s):  
Ramezan Ali Mahdavinejad

The usage of lubrication in machining processes especially in high speed milling is very important. In this research, some steel samples are machined with and without cooling lubricant conditions. In these cases, the material removal rate and surface finishing of machined surfaces are analyzed. The comparison between two conditions shows that the usage of lubricant as coolant material, improves the output machining parameters significantly.


Sign in / Sign up

Export Citation Format

Share Document