scholarly journals Influence of Energy on Compaction Characteristics of High Expansive Soils

Each soil type has different behavior with regard to determination of maximum dry density and optimum moisture content and therefore any soil type has its own compaction requirements for experimental purposes and for control the compaction in the field. The general purpose of this study is to a better understanding of the compaction characteristics of high expansive soils, with emphasis on the relationships of moisture content and dry density of high expansive soils at a range of compaction energy levels. To achieve this purpose, high expansive soils samples were subjected to Atterberg limit and a set of laboratory compaction tests to find compaction characteristics namely; maximum dry unit weight and optimum water content of high expansive soils at different compaction energy (compaction effort) for different number of hammer blows per each layer range from 10 to 50, which varied the energy per unit volume from 356 KN/m3 to 1188 KN/m3.Rather than single peak compaction curves, the most achieved compaction curves are an irregular one and half peak compaction curves. According to the comparison results of different compaction energy, it was concluded that the maximum dry unit weight of high expansive soil was not highly affected by gradually increase of applied energy. The results showed that, the maximum dry density of tested expansive soils sample increased from 1.48g/cm3 to 1.6g/cm3 with increase of compaction energy from 356 KN/m3 to 1188 KN/m3.

2013 ◽  
Vol 405-408 ◽  
pp. 548-553
Author(s):  
Xin Zhong Wang ◽  
Rui Liu ◽  
Shu Jun Peng

The compaction characteristics of the lime-treated expansive soils from the planning airport in China's Ankang were studied through the heavy compaction tests. The results show that all these elements such as lime content, water content, soil height, wetting time have a certain effect on dry density. As the lime quality ratio increases, the optimum water content under heavy compacting standard of improved soils increases but the maximum dry density decreases. With the increase of lime content, the effect of water content on dry density decreases while the water content near to its optimum value. Soils with the lower height have higher dry density when compaction energy, lime content and water content unchanged. As the wetting time increases, the maximum dry density shows a decreasing tendency until after 48 h it remained stable. It indicates that with the same lime content the order of primary factors influence on dry density are water content, wetting time, soil height. Finally, the lime stabilizing principle to expansive soil is explained through by applying scanning electron microscope technique.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 287 ◽  
Author(s):  
Azhar Sadiq yasun ◽  
Jamal N. Al Abbasi

The processing of optimum moisture  content for specific soils as indicated by ASTM D698 specifications detail relies upon developing the fitting third or second degree bend connection between dampness content versus soil dry unit weight on a fitting bend, the registered optimum moisture  substance may contrast for a similar soil as for fitting bend figure and its position. The main objective of this study is to evaluate the optimum moisture content value based on computing average moisture content adapted from standard or modified Proctor compaction test trials and compared it with respect to the computing optimum moisture content using standard method. The research deals with a (52) compaction tests results with a wide range of optimum moisture content and dry unit weight to explore the relationships between them. The study also explores the maximum dry density values which versus standard optimum moisture content and average adopted moisture content. Statistical part depends on evaluating many statistical function values for standard and research method starts by evaluating significance of normality using Kolmogorov-Smirnov test. The average differences between standard optimum moisture content and an average value (this study depends) for moisture content was about (-0.20) and an average of differences for dry unit weight values was (0.261).  


2012 ◽  
Vol 170-173 ◽  
pp. 482-485
Author(s):  
Yi Wen ◽  
Yong He Wang ◽  
Hong Bing Xiao ◽  
Chang Zi Qu

In this paper, through the indoor experiment study of compaction characteristics of completely weathered granite improved soil, analyse the relation of the maximum dry density and the optimum moisture content with lime and cement content, and through the fitting working out the relation curves and fitting formula of the improved soil of the maximum dry density and the optimum moisture content with lime and cement content . Provide reference for similar engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chengfu Chu ◽  
Fei Zhang ◽  
Daoxiang Wu ◽  
Meihuang Zhan ◽  
Yun Liu

Aiming at researching shear strength parameters of expansive soil modified by industrial waste iron tailings sand, the enhancement of expansive soil is explored from macroscopic and microscopic aspects. After characterization and testing by various means, the results show that expansive soil modified by iron tailings sand will increase the maximum dry density of the improved soil and reduce its optimal moisture content, which is beneficial in tuning the moisture content at the construction site. In addition, iron tailings sand can improve the shear strength of expansive soils. The influence of iron tailings sand on cohesion increases first, then decreases, and reaches the peak value at 30%, while the effect on internal friction angle exhibits a continuously increasing trend. Furthermore, according to mercury intrusion tests and microangle analysis, the addition of iron tailings sand can reduce the tiny pores and enhance the occlusal force of the soil. Simultaneously, it increases the number of large pores, maximizing the macroscopic strengthening of iron tailings sand towards the expansive soil.


2020 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
G.O Adunoye ◽  
A.A Ojo ◽  
A.F Alasia ◽  
M.O Olarewaju

The importance of soil compaction for civil engineering construction and application cannot be over-emphasised. To perform soil compaction, numerous number of samples are required, with considerable time and laborious laboratory activities. This has necessitated the need to find models for the prediction of compaction characteristics, using easily determined soil properties. This work therefore undertook a study of the correlation potential of compaction characteristics and Atterberg limits of soils, with a view to modelling compaction characteristics, using Atterberg limits. To achieve this aim, soil samples were obtained from selected locations within Obafemi Awolowo University campus, Ile-Ife, Nigeria. Preliminary, Atterberg limits and compaction tests were conducted on the soil samples, using standard procedure. Using Microsoft Excel and Xuru’s Regression tool, the laboratory test results were used to develop relationships between compaction characteristics (optimum moisture content and maximum dry density) and Atterberg limits (liquid limit and plastic limit). Results showed that the natural moisture content of soil samples ranged between 4.97 % and 19.72 %; liquid limit ranged between 27 % and 68 %; plastic limit ranged between 18.92 % and 63.01 %; and plasticity index ranged between 0.94 % and 14.63 %. The optimum moisture content ranged between 6.7 % and 27 %, while the maximum dry density ranged between 1560 kN/m3 and 2260 kN/m3. The results of regression analysis showed that the combination of liquid limit and plastic limit has a strong correlation with optimum moisture content (R2 = 0.870); while the combination (of liquid limit and plastic limit) showed a weak correlation with maximum dry density (R2 = 0.150). The study concluded that liquid limit and plastic limit could be used to estimate the optimum moisture content of the soils, by applying the developed relationship/equation.  


The aim of the present study is to determine the physical and geotechnical characteristics of municipal solid waste (MSW) from an open dump site located in Una town, Himachal Pradesh (India) for the analysis of settlement and structural stability of landfill. Degraded waste was tested for different time intervals ranging from 6 months to 6 years. The physical characterization and the geotechnical tests were performed to determine the composition and the engineering properties of MSW respectively. The presence of moisture content in the fresh waste was 49.5±1.05% but for the degraded (or old) waste it varied between 39.8 to 51.6%. The specific gravity of fresh and old waste varied between 1.83±0.05 and 1.85 for 6 months old waste and 2.28 for 5-6 years old degraded waste respectively. The maximum dry density (MDD) was observed to be 4.28 kN/m2 for fresh waste at the optimum moisture content (OMC) of 78.1% and 4.47 kN/m3 for 6 months old waste and 6.25 kN/m3 for the degraded waste of 5-6 years at 80.2, 85.4% of OMC respectively. The hydraulic conductivity (k) of MSW was found to be decreasing with the degradation of MSW and the overburden pressure whereas the shear strength increased along with the degradation of the waste. The cohesion (c) and angle of internal friction (φ) increased respectively from 31.2 kPa(fresh) to 38 kPa(degraded) and 14° to 22° with the increase in waste degradation. The compression ratio of fresh waste was within the ranges of 0.19-0.29 and for degraded MSW it varied between 0.12 for 6 months old waste and 0.17 for 5-6 years old degraded waste respectively.


2021 ◽  
Vol 9 (1) ◽  
pp. 16-20
Author(s):  
Iyad Alkroosh ◽  
Ali Al-Robay ◽  
Prabir Sarker ◽  
Saif Alzabeebee

This paper investigates the influence of sand content on the mechanical behavior of a low plasticity clay that collected from south of Iraq (Sumer town). Samples have been prepared with sand contents of 0%, 10%, 20%, 30%, and 40% of the clay weight. Standard Proctor and unconfined compression tests have been carried out and the optimum moisture content, maximum dry density, and undrained shear strength have been determined. The results show a gradual increasing trend of the maximum dry density with the increase of the sand content up to 30%. The highest dry density reaches 1.90 g/cm3 corresponding to an optimum moisture content of 12%. In addition, this paper shows that the undrained shear strength is inversely proportional to the increase of the percentage of sand. The results of this work provide a useful addition to the literature regarding the behaviour or low plasticity clay-sand mixture.


2013 ◽  
Vol 710 ◽  
pp. 348-351
Author(s):  
Zheng Rong Zhao ◽  
Lei Wang ◽  
Hong Xia Yang

Through compaction test discussed about the compaction characteristics of expansive soil by lime modified in middle of Shandong province. The results show that the optimum moisture content is lower when the expansive soil is cured by dry compaction method, and the maximum dry density is higher. Compaction curve appeared the phenomenon of two peaks when expansive soil is cured by wet compaction method.Lime content of lime improved expansive soil, particle size composition, age and compaction function have influence on compaction curve.With the increase of the quantity of lime, the optimum moisture content increases, the maximum dry density decreases. With the age growth, the optimum moisture content increase slightly,the maximum dry density decreases slightly. The bigger the compaction work, the smaller moisture content is, the larger the maximum dry density is.


2018 ◽  
Vol 250 ◽  
pp. 01008
Author(s):  
Tuan Noor Hasanah Tuan Ismail ◽  
Siti Aimi Nadia Mohd Yusoff ◽  
Ismail Bakar ◽  
Devapriya Chitral Wijeyesekera ◽  
Adnan Zainorabidin ◽  
...  

Soils at many sites do not always have enough strength to bear the structures constructed over them and some of the soil may need to be stabilized in order to improve their geotechnical properties. In this paper, routine laboratory tests were critically carried out to investigate the efficacy of lignin in improving the strength behaviour of the soils. Two different soil samples (laterite and kaolin) were studied and mixed with different proportions of lignin (2% and 5% of dry weight of soil), respectively. Unconfined Compressive Strength (UCS) characteristics evaluated in this study were done on samples at their maximum dry density and optimum moisture content (obtained from compaction tests). The UCS tests on all the specimens were carried out after 0, 7, 15, 21 and 30 days of controlled curing. The research results showed that the addition of lignin into kaolin reduced its maximum dry density while giving progressively higher optimum moisture content. Contrarily, with the laterite soil, both maximum dry density and optimum moisture content simultaneously increased when lignin was added into the soils. The UCS results showed that the the stabilized laterite with 2% lignin continued to gain strength significantly at a fairly steady rate after 7 days. Unfortunately, lignin did not show a significant effect in kaolin.


Sign in / Sign up

Export Citation Format

Share Document