scholarly journals Dual Source Self Displaying Water Pumps

Energy may be a key ingredient for the development of a nation. India is a country that is profusely endued with renewable energy sources. It is an outsized nation and the rate of electrification have not unsubdued speed with the increasing people, development and industrialisation has resulted in the increasing shortage between need and supply of electricity. Individuals who are not provided the facility grid need to be dependent on fossil fuels like diesel and petrol for his or her power wants and additionally incur significant revenant expenditure. We have taken initiative to design and implement a pump which will be operated on multiple energy sources. The pump is operated by taking power from the prevailing AC grid and facility taken from the standalone electrical photovoltaic system. The pump works on renewable solar power and whenever there is a shortage of solar power, it is switched to AC grid. Additionally, to the system, a self-display unit has been put in within the pump. This unit helps the buyer to observe the motor parameters like voltage, current and frequency any time. This unit helps in reducing the value for putting in a separate meter close to the starter of the pump. This increases the compactness of the pump.

DYNA ◽  
2018 ◽  
Vol 85 (207) ◽  
pp. 129-134 ◽  
Author(s):  
David Restrepo ◽  
Bonie Restrepo ◽  
Luz Adriana Trejos-Grisales

The integration of renewable energy sources to create microgrids is drawing growing interest to address current energy-related challenges around the globe. Nevertheless, microgrids must be analyzed using specialized tools that allow to conduct operation, technical and economic studies. In that regard, this paper presents a case study in which the software HOMER Energy Pro was implemented to design and analyze the performance of a microgrid. Such microgrid comprises a photovoltaic system, a wind system and a diesel plant. The parameters of the energy systems are based on information about local weather conditions available in databases. Finally, this analysis is performed under two conditions: stand-alone and grid-tied.


2015 ◽  
Vol 8 (8) ◽  
pp. 2471-2479 ◽  
Author(s):  
S. H. Jensen ◽  
C. Graves ◽  
M. Mogensen ◽  
C. Wendel ◽  
R. Braun ◽  
...  

Electricity storage is needed on an unprecedented scale to sustain the ongoing transition of electricity generation from fossil fuels to intermittent renewable energy sources like wind and solar power.


2019 ◽  
Vol 11 (12) ◽  
pp. 1481 ◽  
Author(s):  
Iva Gašparović ◽  
Mateo Gašparović

In the last few years, the world has been turning to the exploitation of renewable energy sources due to increased awareness of environmental protection and increased consumption of fossil fuels. In this research, by applying geographic information systems and integrating them with multi-criteria decision making methods, an area suitable for the construction and exploitation of renewable energy sources is determined. The research uses not only climate, spatial, environmental, and geomorphological parameters but also socioeconomic parameters, population, unemployment, and number of tourist nights as well as electricity consumption. By applying spatial analysis, rasters of all parameters were created using GRASS GIS software. Using the analytic hierarchy process, the calculated rasters are assigned with weight coefficients, and the sum of all those rasters gives the final raster of optimal locations for the construction of solar power plants in Croatia. To test the accuracy of the obtained results, sensitivity analysis was performed using different weight coefficients of the parameters. From the sensitivity analysis results, as well as a histogram and statistical indicators of the three rasters, it is apparent that raster F1 gives the best results. The most decisive parameters in determining the optimal solar plant locations that result from this research are GHI, land cover, and distance to the electricity network.


2021 ◽  
Vol 13 (13) ◽  
pp. 7025
Author(s):  
Shiva Gorjian ◽  
Behnam Hosseingholilou ◽  
Laxmikant D. Jathar ◽  
Haniyeh Samadi ◽  
Samiran Samanta ◽  
...  

The food industry is responsible for supplying the food demand of the ever-increasing global population. The food chain is one of the major contributors to greenhouse gas (GHG) emissions, and global food waste accounts for one-third of produced food. A solution to this problem is preserving crops, vegetables, and fruits with the help of an ancient method of sun drying. For drying agricultural and marine products, several types of dryers are also being developed. However, they require a large amount of energy supplied conventionally from pollutant energy sources. The environmental concerns and depletion risks of fossil fuels persuade researchers and developers to seek alternative solutions. To perform drying applications, sustainable solar power may be effective because it is highly accessible in most regions of the world. Greenhouse dryers (GHDs) are simple facilities that can provide large capacities for drying agricultural products. This study reviews the integration of GHDs with different solar technologies, including photovoltaic (PV), photovoltaic-thermal (PVT), and solar thermal collectors. Additionally, the integration of solar-assisted greenhouse dryers (SGHDs) with heat pumps and thermal energy storage (TES) units, as well as their hybrid configuration considering integration with other renewable energy sources, is investigated to improve their thermal performance. In this regard, this review presents and discusses the most recent advances in this field. Additionally, the economic analysis of SGHDs is presented as a key factor to make these sustainable facilities commercially available.


2021 ◽  
Vol 50 (4-5) ◽  
pp. 433-444
Author(s):  
Olusola Joshua Olujobi ◽  
Temilola Olusola-Olujobi

Fossil fuels have been the mainstream of energy supply and a major source of foreign exchange earnings for the Federal Government of Nigeria, in spite of being an unrenewable and unsustainable source of energy. Nigeria is yet to tap into the full benefits after privatising its power sector, including the new global evolution in the energy sector and the resulting increasing demand for renewable energy sources, which some consider to be cheaper and more environmentally friendly than fossil fuels and their allied products. Energy security is a challenge to socio-economic development in Nigeria, due to the country’s over-dependency on fossil fuels. In terms of their impact and the potentials to preserve energy sources for longevity and sustainability, however, fossil fuels will come to be seen as an out-dated alternative in the power sector as the energy industry evolves. The implications for Nigeria’s oil sector will not be limited to dwindling crude oil prices. The concerns include poor energy utilisation in Nigeria and the need to promote energy efficiency and sustainability. They have led to the formulation of new energy policies around the world to serve as a vehicle for translating solutions into reality. This study has adopted a library-based legal research method with a comparative approach. The study reveals that it is the lack of a coherent legal framework with incentives for using renewable energy that is largely seen as the key issue causing slow uptake of renewable energy as an alternative source of energy in Nigeria. As well as the need for a coherent legal framework on energy and incentives for using renewable energy sources, the study advocates stringent enforcement of existing energy regulatory policies.


2014 ◽  
Vol 70 (a1) ◽  
pp. C20-C20
Author(s):  
Evgeny Antipov ◽  
Nellie Khasanova

Ninety percent of the energy produced today come from fossil fuels, making dramatically negative impact on our future due to rapid consumption of these energy sources, ecological damage and climate change. This justifies development of the renewable energy sources and concurrently efficient large storage devices capable to replace fossil fuels. Li-ion batteries have originally been developed for portable electronic devices, but nowadays new application niches are envisaged in electric vehicles and stationary energy storages. However, to satisfy the needs of these rapidly growing applications, Li-ion batteries require further significant improvement of their properties: capacity and power, cyclability, safety and cost. Cathode is the key part of the Li-ion batteries largely determining their performance. Severe requirements are imposed on a cathode material, which should provide fast reversible intercalation of Li-ions at redox potential close to the upper boundary of electrolyte stability window, possess relatively low molecular weight and exhibit small volume variation upon changing Li-concentration. First generation of the cathode materials for the Li-ion batteries based on the spinel (LiM2O4, M – transition metal) or rock-salt derivatives (LiMO2) has already been widely commercialised. However, the potential to further improve the performance of these materials is almost exhausted. The compounds, containing lithium and transition metal cations together with different polyanions (XmOn)p- (X=B, P, S, Si), are now considered as the most promising cathode materials for the next generation of the Li-ion batteries. Covalently-bonded structural frameworks in these compounds offer long-term structural stability, which is essential for good cyclability and safety. Further advantages are expected from combining different anions (such as (XO4)p- and F- ) in the anion sublattice, with the hope to enhance the specific energy and power of these materials. Various fluoride-phosphates and fluoride-sulphates have been recently discovered, and some of them exhibit attractive electrochemical performance. An overview of the research on the cathode materials for the Li-ion batteries will be presented with special emphasis on crystallography as a guide towards improved properties important for practical applications.


2021 ◽  
Vol 11 (11) ◽  
pp. 5142
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

The use of fossil fuels (coal, fuel, and natural gas) to generate electricity has been reduced in the European Union during the last few years, involving a significant decrease in greenhouse gas emissions [...]


1992 ◽  
Vol 3 (4) ◽  
pp. 430-443 ◽  
Author(s):  
Ruud Pleune

Present energy use - largely dependent on fossil fuels - is incompatible with the sustainable world concept. In a sustainable world, energy sources are renewable and used in a way that damage to the environment is minimalized. This study investigates the possibility of a sustainable world using renewable energy sources. It appears that - when strict energy conservation is applied - such a sustainable world seems to be attainable. This requires, however, drastic changes in most parts of society.


2018 ◽  
Vol 7 (3.27) ◽  
pp. 41
Author(s):  
Rupanshu Suhane ◽  
M K. Chopra ◽  
V V.K. Sethi

In this paper the scientific displaying of battery and ultra capacitor is performed for solar photovoltaic system. The expansion of the ultra capacitor bank displays the requirement for a philosophy to upgrade the photovoltaic system to avoid abundance battery stockpiling. This work traces the strategy used to streamline the blend of photovoltaic boards, batteries, and ultra capacitors for a given solar radiation and load profile. Lessening supplies of petroleum derivative, top oil and the natural effect of non-renewable energy sources on the earth has energized a development in manageable energies, for example, wind and solar power.  


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7525
Author(s):  
Mariusz Niekurzak

The aim of the manuscript was to present the collective results of research on the profitability of using various renewable sources in Poland with the greatest development potential. In the paper, the economic parameters of various investment projects were determined and calculated, i.e., Net Capital Value (NPV), Internal Rate of Return (IRR) and the Period of Return on Invested Capital (PBT). The economic assessment of the use of RES technologies was supplemented with the assessment of environmental benefits. The ecological criterion adopted in the study was the assessment of the potential and costs of reducing greenhouse gas emissions as a result of replacing fossil fuels with renewable energy technologies. On the basis of the constructed economic model to assess the profitability of investments, it has been shown that the analyzed projects will start to bring, depending on their type and technical specification, measurable economic benefits in the form of a reduction in the amount of energy purchased on an annual basis and environmental benefits in the form of reduction of carbon dioxide emissions to the atmosphere. Moreover, the calculations show a high potential for the use of certain renewable sources in Poland, which contributes to the fulfillment of energy and emission obligations towards the EU. The analyzes and research of the Polish energy market with the use of the presented models have shown that the project is fully economically justified and will allow investors to make a rational decision on the appropriate selection of a specific renewable energy source for their investment. The presented economic models to assess the profitability of investments in renewable energy sources can be successfully used in other countries and can also be a starting point for a discussion about the direction of energy development. Due to the lack of collective, original and up-to-date research on the domestic market, the manuscript provides the reader with the necessary knowledge regarding the legitimacy of using renewable energy sources, investment and environmental profitability.


Sign in / Sign up

Export Citation Format

Share Document