scholarly journals Video Transmission In Wireless Multihop Networks

Multi hop wireless networks are being deployed in many video streaming applications because they have several potential features for next generation wireless communications. Though optimal encoding techniques offers significant quality retention in video transmission still it is insufficient to overcome the challenges ahead over wireless network transmission. In order to support wide range video communications in an efficient way certain Quality of service has to be retained in multi hop wireless network. To address this issue, this paper investigates several encoding and routing protocols video delivery over multi hop wireless networks. Specifically, we first investigate several encoding framework for videos and wireless data transmission over WMNs through individual paths; we then investigate the challenges ahead to formulate resistant routing model for least possible video quality dictions which incorporate channel status as well as the encoder properties over video characteristics. In this framework, routing techniques which can maximally used to achieve good video traffic with improved system performance. However, video streaming also have very stringent delay requirements, which makes it difficult to find optimal routes with the least possible distortions. To address this problem, we investigate several enhanced version of packet scheduling techniques for video communications over multi path multi hob multi user wireless network environment.

Author(s):  
Monalisa Ghosh ◽  
Chetna Singhal

Video streaming services top the internet traffic surging forward a competitive environment to impart best quality of experience (QoE) to the users. The standard codecs utilized in video transmission systems eliminate the spatiotemporal redundancies in order to decrease the bandwidth requirement. This may adversely affect the perceptual quality of videos. To rate a video quality both subjective and objective parameters can be used. So, it is essential to construct frameworks which will measure integrity of video just like humans. This chapter focuses on application of machine learning to evaluate the QoE without requiring human efforts with higher accuracy of 86% and 91% employing the linear and support vector regression respectively. Machine learning model is developed to forecast the subjective quality of H.264 videos obtained after streaming through wireless networks from the subjective scores.


2013 ◽  
Vol 760-762 ◽  
pp. 639-642
Author(s):  
Li Qiang Liu ◽  
Yue Bing Wang ◽  
Quan Feng Yan

With the rapid development of computer technology and wireless network communication technology, video encoding technology will be more and more widely applied in the limited resources of the wireless network. Due to the large amount of data of the video transmission , transmission quality of transmit video on the wireless network are varied with different compression parameters, network parameters and network conditions. Simulation results show that the transmission of video over wireless networks, must be based on the current network conditions, choosing the suitable GOP length and quantitative parameters to get the high image quality. In specific applications, network topology, network bandwidth, routing technology and transmission of packet segmentation scheme and other factors will affect the quality of service for video services.


2021 ◽  
Vol 2074 (1) ◽  
pp. 012031
Author(s):  
Hong Lv ◽  
Weina Huang

Abstract The use of wireless network for remote data collection can provide a fast and reliable wireless data transmission channel for those monitoring points involving a wide area and scattered equipment layout with the help of its large coverage and high communication quality. This article analyzes the characteristics and advantages of wireless networks, and then discusses the networking scheme for remote data collection using wireless networks, and analyzes the reliability of network transmission. Finally, some program fragments on the server side are given.


Author(s):  
Andrey Kuzmin ◽  
Maxim Safronov ◽  
Oleg Bodin ◽  
Mikhail Petrovsky ◽  
Anton Sergeenkov

This paper describes a design of prototype of mobile heart monitoring system based on the Texas Instruments ADS1298R ECG front end and ??2540 wireless data transmission chip. The described design and technical details allow developing a new mobile heart monitoring system consisting of ECG recording device, mobile computer (smartphone or tablet). The original algorithm of energy efficiency improvement by adaptive gain control is proposed and experimentally tested. Increase of battery life is from 1% to 19% depending on concrete conditions. The new algorithm of J-point detection is described and examined on the test ECG database. The detection rate is from 88% to 93%. It will allow mobile monitoring system to inform the user about any signs of dangerous heart condition in ECG. The paper also describes experimental results of wireless protocol bandwidth and contact break detection. The results confirm the efficiency of the proposed technical solutions to mobile heart monitoring for wide range of applications from sports and fitness to monitoring for medical reasons.


2014 ◽  
Vol 701-702 ◽  
pp. 961-964
Author(s):  
Tao Tao Li ◽  
Feng Yang ◽  
Ming Chu Liu

A wireless data transmission system used to realize data transmission of ground penetrating radar (GPR) is designed. It including data receiver and sender overcomes the disadvantages of traditional GPR cable transmission system. STM32F407 chip and ATK-RM04 are core components of data sender. PC with a wireless network card is data receiver. System is designed with reference to C/S network model. Data receiver and sender are respectively developed with VC++ socket and RAW API of Lwip TCP/IP protocol stack. CP protocol is chosen as network transport protocol. Practical applications show that system can stably transmit data within 0m-20m and maximum loss rate is 0.005%. It is reliable and convenient for GPR’s application.


2008 ◽  
Vol 2008 ◽  
pp. 1-21
Author(s):  
Monchai Lertsutthiwong ◽  
Thinh Nguyen ◽  
Alan Fern

Limited bandwidth and high packet loss rate pose a serious challenge for video streaming applications over wireless networks. Even when packet loss is not present, the bandwidth fluctuation, as a result of an arbitrary number of active flows in an IEEE 802.11 network, can significantly degrade the video quality. This paper aims to enhance the quality of video streaming applications in wireless home networks via a joint optimization of video layer-allocation technique, admission control algorithm, and medium access control (MAC) protocol. Using an Aloha-like MAC protocol, we propose a novel admission control framework, which can be viewed as an optimization problem that maximizes the average quality of admitted videos, given a specified minimum video quality for each flow. We present some hardness results for the optimization problem under various conditions and propose some heuristic algorithms for finding a good solution. In particular, we show that a simple greedy layer-allocation algorithm can perform reasonably well, although it is typically not optimal. Consequently, we present a more expensive heuristic algorithm that guarantees to approximate the optimal solution within a constant factor. Simulation results demonstrate that our proposed framework can improve the video quality up to 26% as compared to those of the existing approaches.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
P. Bucciol ◽  
E. Masala ◽  
E. Filippi ◽  
J. C. De Martin

This work presents an application-level perceptual ARQ algorithm for video streaming over 802.11e wireless networks. A simple and effective formula is proposed to combine the perceptual and temporal importance of each packet into a single priority value, which is then used to drive the packet-selection process at each retransmission opportunity. Compared to the standard 802.11 MAC-layer ARQ scheme, the proposed technique delivers higher perceptual quality because it can retransmit only the most perceptually important packets reducing retransmission bandwidth waste. Video streaming of H.264 test sequences has been simulated withnsin a realistic 802.11e home scenario, in which the various kinds of traffic flows have been assigned to different 802.11e access categories according to the Wi-Fi alliance WMM specification. Extensive simulations show that the proposed method consistently outperforms the standard link-layer 802.11 retransmission scheme, delivering PSNR gains up to 12 dB while achieving low transmission delay and limited impact on concurrent traffic. Moreover, comparisons with a MAC-level ARQ scheme which adapts the retry limit to the type of frame contained in packets and with an application-level deadline-based priority retransmission scheme show that the PSNR gain offered by the proposed algorithm is significant, up to 5 dB. Additional results obtained in a scenario in which the transmission relies on an intermediate node (i.e., the access point) further confirms the consistency of the perceptual ARQ performance. Finally, results obtained by varying network conditions such as congestion and channel noise levels show the consistency of the improvements achieved by the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document