scholarly journals Energy Efficient and Secured Data Dissemination in Wsn

Data dissemination is a high level application service, provided to WSN to update the configuration parameter to make the node perform intended services. The configuration parameters of the nodes are updated by means of reprogramming and reconfiguration through over air programming. In data dissemination, the data are so sensitive that even a small change in a data will lead to data corruption and nodes will not perform intended services. In most of the existing systems, providing energy efficient secured data dissemination is a major concern. The attackers can interrupt the process data dissemination and launch various types of attacks, In-order to overcome these challenges. In this paper, a novel Secure Based Dissemination protocol is proposed which can provide energy efficient data dissemination. The proposed protocol ensures better authentication during data dissemination. The proposed protocol is implemented in NS2 simulator. Simulation results justifies that, proposed protocol output forms the existing techniques and has better Packet Delivery Ratio, throughput , network life time, energy consumption, end to end delay and routing overhead .

2021 ◽  
Vol 13 (1) ◽  
pp. 75-92
Author(s):  
Lakshmi M ◽  
Prashanth C R

Designing an energy-efficient scheme in a Heterogeneous Wireless Sensor Network (HWSN) is a critical issue that degrades the network performance. Recharging and providing security to the sensor devices is very difficult in an unattended environment once the energy is drained off. A Clustering scheme is an important and suitable approach to increase energy efficiency and transmitting secured data which in turn enhances the performance in the network. The proposed algorithm Energy Efficient Clustering (EEC) works for optimum energy utilization in sensor nodes. The algorithm is proposed by combining the rotation-based clustering and energy-saving mechanism for avoiding the node failure and prolonging the network lifetime. This shows MAC layer scheduling is based on optimum energy utilization depending on the residual energy. In the proposed work, a densely populated network is partitioned into clusters and all the cluster heads are formed at a time and selected on rotation based on considering the highest energy of the sensor nodes. Other cluster members are accommodated in a cluster based on Basic Cost Maximum flow (BCMF) to allow the cluster head for transmitting the secured data. Carrier Sense Multiple Access (CSMA), a contention window based protocol is used at the MAC layer for collision detection and to provide channel access prioritization to HWSN of different traffic classes with reduction in End to End delay, energy consumption, and improved throughput and Packet delivery ratio(PDR) and allowing the cluster head for transmission without depleting the energy. Simulation parameters of the proposed system such as Throughput, Energy, and Packet Delivery Ratio are obtained and compared with the existing system.


2018 ◽  
Vol 26 (3) ◽  
pp. 25-36
Author(s):  
Deo Prakash ◽  
Neeraj Kumar ◽  
M.L. Garg

Mobile Adhoc Network (MANET) is a dynamic network without any centralized control. Due to frequent topological change, routing has been always a challenging task in these networks. This article presents optimized routing for efficient data dissemination in MANETs to meet the fast-changing technology of today's world. A novel metric for such optimized routing in MANET is proposed. The main parameters considered to evaluate this metric are the energy consumed during the communication, link stability, Packet Delivery Ratio (PDR) and traffic. The concept is based on a scenario in which a mobile node (source) sends data packets to another mobile node (destination) through its dynamically connected neighboring nodes. The path which consumes the lowest energy and also shows highest link stability is selected for consideration. In case the paths consume the same amount of energy, the highest stable path is chosen. In this manner, the most optimized path is selected. The authors' routing approach shows more efficiency than earlier in dissemination of data and information over the Mobile Ad-Hoc Networks.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2073
Author(s):  
Seho Han ◽  
Kisong Lee ◽  
Hyun-Ho Choi ◽  
Howon Lee

In opportunistic device-to-device (D2D) networks, the epidemic routing protocol can be used to optimize the message delivery ratio. However, it has the disadvantage that it causes excessive coverage overlaps and wastes energy in message transmissions because devices are more likely to receive duplicates from neighbors. We therefore propose an efficient data dissemination algorithm that can reduce undesired transmission overlap with little performance degradation in the message delivery ratio. The proposed algorithm allows devices further away than the k-th furthest distance from the source device to forward a message to their neighbors. These relay devices are determined by analysis based on a binomial point process (BPP). Using a set of intensive simulations, we present the resulting network performances with respect to the total number of received messages, the forwarding efficiency and the actual number of relays. In particular, we find the optimal number of relays to achieve almost the same message delivery ratio as the epidemic routing protocol for a given network deployment. Furthermore, the proposed algorithm can achieve almost the same message delivery ratio as the epidemic routing protocol while improving the forwarding efficiency by over 103% when k≥10.


Sign in / Sign up

Export Citation Format

Share Document