scholarly journals IProCAD: Intelligent Prognosis of Coronary Artery Disease Excluding Angiogram in Patient with Stable Angina

Cardiovascular diseases are one of the main causes of mortality in the world. A proper prediction mechanism system with reasonable cost can significantly reduce this death toll in the low-income countries like Bangladesh. For those countries we propose machine learning backed embedded system that can predict possible cardiac attack effectively by excluding the high cost angiogram and incorporating only twelve (12) low cost features which are age, sex, chest pain, blood pressure, cholesterol, blood sugar, ECG results, heart rate, exercise induced angina, old peak, slope, and history of heart disease. Here, two heart disease datasets of own built NICVD (National Institute of Cardiovascular Disease, Bangladesh) patients’, and UCI (University of California Irvin) are used. The overall process comprises into four phases: Comprehensive literature review, collection of stable angina patients’ data through survey questionnaires from NICVD, feature vector dimensionality is reduced manually (from 14 to 12 dimensions), and the reduced feature vector is fed to machine learning based classifiers to obtain a prediction model for the heart disease. From the experiments, it is observed that the proposed investigation using NICVD patient’s data with 12 features without incorporating angiographic disease status to Artificial Neural Network (ANN) shows better classification accuracy of 92.80% compared to the other classifiers Decision Tree (82.50%), Naïve Bayes (85%), Support Vector Machine (SVM) (75%), Logistic Regression (77.50%), and Random Forest (75%) using the 10-fold cross validation. To accommodate small scale training and test data in our experimental environment we have observed the accuracy of ANN, Decision Tree, Naïve Bayes, SVM, Logistic Regression and Random Forest using Jackknife method, which are 84.80%, 71%, 75.10%, 75%, 75.33% and 71.42% respectively. On the other hand, the classification accuracies of the corresponding classifiers are 91.7%, 76.90%, 86.50%, 76.3%, 67.0% and 67.3%, respectively for the UCI dataset with 12 attributes. Whereas the same dataset with 14 attributes including angiographic status shows the accuracies 93.5%, 76.7%, 86.50%, 76.8%, 67.7% and 69.6% for the respective classifiers

2020 ◽  
Vol 7 (3) ◽  
pp. 441-450
Author(s):  
Haliem Sunata

Tingginya penggunaan mesin ATM, sehingga menimbulkan celah fraud yang dapat dilakukan oleh pihak ketiga dalam membantu PT. Bank Central Asia Tbk untuk menjaga mesin ATM agar selalu siap digunakan oleh nasabah. Lambat dan sulitnya mengidentifikasi fraud mesin ATM menjadi salah satu kendala yang dihadapi PT. Bank Central Asia Tbk. Dengan adanya permasalahan tersebut maka peneliti mengumpulkan 5 dataset dan melakukan pre-processing dataset sehingga dapat digunakan untuk pemodelan dan pengujian algoritma, guna menjawab permasalahan yang terjadi. Dilakukan 7 perbandingan algoritma diantaranya decision tree, gradient boosted trees, logistic regression, naive bayes ( kernel ), naive bayes, random forest dan random tree. Setelah dilakukan pemodelan dan pengujian didapatkan hasil bahwa algoritma gradient boosted trees merupakan algoritma terbaik dengan hasil akurasi sebesar 99.85% dan nilai AUC sebesar 1, tingginya hasil algoritma ini disebabkan karena kecocokan setiap attribut yang diuji dengan karakter gradient boosted trees dimana algoritma ini menyimpan dan mengevaluasi hasil yang ada. Maka algoritma gradient boosted trees merupakan penyelesaian dari permasalahan yang dihadapi oleh PT. Bank Central Asia Tbk.


2019 ◽  
Vol 9 (14) ◽  
pp. 2789 ◽  
Author(s):  
Sadaf Malik ◽  
Nadia Kanwal ◽  
Mamoona Naveed Asghar ◽  
Mohammad Ali A. Sadiq ◽  
Irfan Karamat ◽  
...  

Medical health systems have been concentrating on artificial intelligence techniques for speedy diagnosis. However, the recording of health data in a standard form still requires attention so that machine learning can be more accurate and reliable by considering multiple features. The aim of this study is to develop a general framework for recording diagnostic data in an international standard format to facilitate prediction of disease diagnosis based on symptoms using machine learning algorithms. Efforts were made to ensure error-free data entry by developing a user-friendly interface. Furthermore, multiple machine learning algorithms including Decision Tree, Random Forest, Naive Bayes and Neural Network algorithms were used to analyze patient data based on multiple features, including age, illness history and clinical observations. This data was formatted according to structured hierarchies designed by medical experts, whereas diagnosis was made as per the ICD-10 coding developed by the American Academy of Ophthalmology. Furthermore, the system is designed to evolve through self-learning by adding new classifications for both diagnosis and symptoms. The classification results from tree-based methods demonstrated that the proposed framework performs satisfactorily, given a sufficient amount of data. Owing to a structured data arrangement, the random forest and decision tree algorithms’ prediction rate is more than 90% as compared to more complex methods such as neural networks and the naïve Bayes algorithm.


Author(s):  
Elizabeth Ford ◽  
Philip Rooney ◽  
Seb Oliver ◽  
Richard Hoile ◽  
Peter Hurley ◽  
...  

Abstract Background Identifying dementia early in time, using real world data, is a public health challenge. As only two-thirds of people with dementia now ultimately receive a formal diagnosis in United Kingdom health systems and many receive it late in the disease process, there is ample room for improvement. The policy of the UK government and National Health Service (NHS) is to increase rates of timely dementia diagnosis. We used data from general practice (GP) patient records to create a machine-learning model to identify patients who have or who are developing dementia, but are currently undetected as having the condition by the GP. Methods We used electronic patient records from Clinical Practice Research Datalink (CPRD). Using a case-control design, we selected patients aged >65y with a diagnosis of dementia (cases) and matched them 1:1 by sex and age to patients with no evidence of dementia (controls). We developed a list of 70 clinical entities related to the onset of dementia and recorded in the 5 years before diagnosis. After creating binary features, we trialled machine learning classifiers to discriminate between cases and controls (logistic regression, naïve Bayes, support vector machines, random forest and neural networks). We examined the most important features contributing to discrimination. Results The final analysis included data on 93,120 patients, with a median age of 82.6 years; 64.8% were female. The naïve Bayes model performed least well. The logistic regression, support vector machine, neural network and random forest performed very similarly with an AUROC of 0.74. The top features retained in the logistic regression model were disorientation and wandering, behaviour change, schizophrenia, self-neglect, and difficulty managing. Conclusions Our model could aid GPs or health service planners with the early detection of dementia. Future work could improve the model by exploring the longitudinal nature of patient data and modelling decline in function over time.


2019 ◽  
Vol 8 (4) ◽  
pp. 1477-1483

With the fast moving technological advancement, the internet usage has been increased rapidly in all the fields. The money transactions for all the applications like online shopping, banking transactions, bill settlement in any industries, online ticket booking for travel and hotels, Fees payment for educational organization, Payment for treatment to hospitals, Payment for super market and variety of applications are using online credit card transactions. This leads to the fraud usage of other accounts and transaction that result in the loss of service and profit to the institution. With this background, this paper focuses on predicting the fraudulent credit card transaction. The Credit Card Transaction dataset from KAGGLE machine learning Repository is used for prediction analysis. The analysis of fraudulent credit card transaction is achieved in four ways. Firstly, the relationship between the variables of the dataset is identified and represented by the graphical notations. Secondly, the feature importance of the dataset is identified using Random Forest, Ada boost, Logistic Regression, Decision Tree, Extra Tree, Gradient Boosting and Naive Bayes classifiers. Thirdly, the extracted feature importance if the credit card transaction dataset is fitted to Random Forest classifier, Ada boost classifier, Logistic Regression classifier, Decision Tree classifier, Extra Tree classifier, Gradient Boosting classifier and Naive Bayes classifier. Fourth, the Performance Analysis is done by analyzing the performance metrics like Accuracy, FScore, AUC Score, Precision and Recall. The implementation is done by python in Anaconda Spyder Navigator Integrated Development Environment. Experimental Results shows that the Decision Tree classifier have achieved the effective prediction with the precision of 1.0, recall of 1.0, FScore of 1.0 , AUC Score of 89.09 and Accuracy of 99.92%.


Author(s):  
Jimmy H. Moedjahedy ◽  
Arief Setyanto ◽  
Komang Aryasa

<p><em>aan yang menipu maupun secara teknis untuk mencuri data identitas pribadi konsumen dan kredensial akun keuangan. Phishing dirancang untuk mengarahkan konsumen ke website phishing yang menipu penerima untuk membocorkan data keuangan seperti nama pengguna dan kata sandi. Dalam dataset phishing, terdapat fitur-fitur yang bisa mengkategorikan apakah sebuah website adalah website phishing atau bukan. Tujuan dari penelitian ini adalah untuk membandingkan hasil seleksi fitur-fitur yang ada dengan menggunakan dua metode yaitu metode gabungan Maximal Information coefficient dan Total Information Coefficient dengan metode korelasi Spearman. Hasil seleksi diuji dengan lima algoritma machine learning yaitu, Logistic Regression, Naïve Bayes, J48, AdaBoost MI</em> dan <em>Random Forest. Hasil dari penelitian ini adalah metode gabungan Maximal Information coefficent dan Total Information Coefficient memiliki nilai akurasi 97.25 % dengan menggunakan Random Forest mengungguli metode korelasi Spearman dengan nilai akurasi 95,33%.</em></p>


2020 ◽  
Vol 8 (6) ◽  
pp. 1637-1642

Machine learning (ML) algorithms are designed to perform prediction based on features. With the help of machine learning, system can automatically learn and improve by experience. Machine learning comes under Artificial intelligence. Machine learning is broadly categorized in two types: supervised and unsupervised. Supervised ML performs classification and unsupervised is for clustering. In present scenario, machine learning is used in various areas. It can be used for biometric recognition, hand writing recognition, medical diagnosis etc. In medical field, machine learning plays an important role in identifying diseases based on patient’s features. Presently,doctors use software application based on machine learning algorithm in various disease diagnosis like cancer, cardiac arrest and many more. In this paper we used an ensemble learning method to predict heart problem. Our study described the performance of ML algorithms by comparing various evaluating parameters such as F-measure, Recall, ROC, precision and accuracy. The study done with various combination ML classifiers such as, Decision Tree (DT), Naïve Bayes (NB), Support Vector Machine (SVM), Random Forest (RF) algorithm to predict heart problem. The result showed that by combining two ML algorithm, DT with NB, 81.1% accuracy was achieved. Simultaneously, the models like Support Vector machine (SVM), Decision tree, Naïve Bayes, Random Forest models were also trained and tested individually.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 6967
Author(s):  
Kang Peng ◽  
Zheng Tang ◽  
Longjun Dong ◽  
Daoyuan Sun

Microseismic monitoring system is one of the effective means to monitor ground stress in deep mines. The accuracy and speed of microseismic signal identification directly affect the stability analysis in rock engineering. At present, manual identification, which heavily relies on manual experience, is widely used to classify microseismic events and blasts in the mines. To realize intelligent and accurate identification of microseismic events and blasts, a microseismic signal identification system based on machine learning was established in this work. The discrimination of microseismic events and blasts was established based on the machine learning framework. The microseismic monitoring data was used to optimize the parameters and validate the classification methods. Subsequently, ten machine learning algorithms were used as the preliminary algorithms of the learning layer, including the Decision Tree, Random Forest, Logistic Regression, SVM, KNN, GBDT, Naive Bayes, Bagging, AdaBoost, and MLP. Then, training set and test set, accounting for 50% of each data set, were prospectively examined, and the ACC, PPV, SEN, NPV, SPE, FAR and ROC curves were used as evaluation indexes. Finally, the performances of these machine learning algorithms in microseismic signal identification were evaluated with cross-validation methods. The results showed that the Logistic Regression classifier had the best performance in parameter identification, and the accuracy of cross-validation can reach more than 0.95. Random Forest, Decision Tree, and Naive Bayes also performed well in this data set. There were some differences in the accuracy of different classifiers in the training set, test set, and all data sets. To improve the accuracy of signal identification, the database of microseismic events and blasts should be expanded, to avoid the inaccurate data distribution caused by the small training set. Artificial intelligence identification methods, including Random Forest, Logistic Regression, Decision Tree, Naive Bayes, and AdaBoost algorithms, were applied to signal identification of the microseismic monitoring system in mines, and the identification results were consistent with the actual situation. In this way, the confusion caused by manual classification between microseismic events and blasts based on the characteristics of waveform signals is solved, and the required source parameters are easily obtained, which can ensure the accuracy and timeliness of microseismic events and blasts identification.


Sign in / Sign up

Export Citation Format

Share Document