scholarly journals Researchof Water Quality and its Chemical Parameters by Titration Method and Instrumenal Method

he water quality analysis is an important aspect in understanding the behavior of water and what can they be used for. This study gives us a valuable information on the general properties of water quality parameters like pH, electrical conductivity, TDS, Bicarbonate, Sulfate, Nitrate, chloride etc. of the study area . Water samples were analyzed at the water quality lab. NIH, Roorkee for pH, electrical conductivity and total dissolved solids. The pH of water varied from 7.14 to 7.75. The electrical conductivity (EC) of sample falls from 620µS/cm to 2000µS/cm. The overall total dissolved solids in water of study area varied from 120mg/l to 900mg/l. Overall the range of the Chloride in water of the study area tend to falls between 13mg/l to 375mg/l. Sulfate of all the water samples that were collected from the study area have ranged from 28mg/l to 250mg .The range of the Bicarbonate of all the water samples varied from 320mg/l to 1051mg/l. The study area helps to know about water quality parameters and how to find their values by usingtwo methods : 1) titration method 2) instrumental method .It also helps us to apply these water quality parameters in ArcGis. It helps us to show the values of different parameters in different blocks ofambala for different years In this we have studied different blocks of ambala district Haryana .We have taken the samples from different places from the blocks and also samples are from wells, canal , rivers, ponds.

2020 ◽  
Vol 4 (3) ◽  
pp. 333-342
Author(s):  
KEHINDE MONSURU YUSUFF ◽  
M. Lawal ◽  
A. T. Audu ◽  
O. A. Wale-Orojo

The health benefits in the description and observation of quantitative contents of quality parameters present or contained in any water source cannot be underestimated as they determine selection of best choice from available water sources for different intended uses as well as resource consumption. It also helps to compare the observed quantity of the quality with the acceptable standards or limits to get desired results. Physical parameters like pH, temperature, electrical conductivity (EC) and total dissolved solids (TDS) among others are determined by present of other chemical properties like Cations (Mg2+, Ca2+, Na+, etc), Anions (Cl-, NO3-, SO42+, etc), heavy metals and other dissolved materials during the course of its formation in different proportions and amounts. This study observed EC and TDS of 20 selected boreholes as two close and correlated water quality parameters as well as two of the major water quality parameters that account for overall quality of any water source, despite their different quantitative contents and physical features, they are likely determined by the same set of cations and anions with similar constraint equations. In contrast to linear programming, multiple criteria optimization models were fitted for EC and TDS using Response Surface Methodology via desirability techniques, optimal values obtained in this case measured against several criteria are found to lie between acceptable standards limits for drinking water, other numerical values and descriptive features in the final results reflect that the response equations obtained were well fitted.


Hydrology ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 24 ◽  
Author(s):  
Mustafa Al-Mukhtar ◽  
Fuaad Al-Yaseen

Total dissolved solids (TDS) and electrical conductivity (EC) are important parameters in determining water quality for drinking and agricultural water, since they are directly associated to the concentration of salt in water and, hence, high values of these parameters cause low water quality indices. In addition, they play a significant role in hydrous life, effective water resources management and health studies. Thus, it is of critical importance to identify the optimum modeling method that would be capable to capture the behavior of these parameters. The aim of this study was to assess the ability of using three different models of artificial intelligence techniques: Adaptive neural based fuzzy inference system (ANFIS), artificial neural networks (ANNs) and Multiple Regression Model (MLR) to predict and estimate TDS and EC in Abu-Ziriq marsh south of Iraq. As so, eighty four monthly TDS and EC values collected from 2009 to 2018 were used in the evaluation. The collected data was randomly split into 75% for training and 25% for testing. The most effective input parameters to model TDS and EC were determined based on cross-correlation test. The three performance criteria: correlation coefficient (CC), root mean square error (RMSE) and Nash–Sutcliffe efficiency coefficient (NSE) were used to evaluate the performance of the developed models. It was found that nitrate (NO3), calcium (Ca+2), magnesium (Mg+2), total hardness (T.H), sulfate (SO4) and chloride (Cl−1) are the most influential inputs on TDS. While calcium (Ca+2), magnesium (Mg+2), total hardness (T.H), sulfate (SO4) and chloride (Cl−1) are the most effective on EC. The comparison of the results showed that the three models can satisfactorily estimate the total dissolved solids and electrical conductivity, but ANFIS model outperformed the ANN and MLR models in the three performance criteria: RMSE, CC and NSE during the calibration and validation periods in modeling the two water quality parameters. ANFIS is recommended to be used as a predictive model for TDS and EC in the Iraqi marshes.


Hydrology ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
Zahraa Q. Lateef ◽  
Abdul-Sahib T. Al-Madhhachi ◽  
Dawood E. Sachit

The present work illustrates the potential application of techniques of spatial analysis via geographic information systems (GIS) to categorize the distribution of temporal and spatial of water prediction characteristics to determine the water quality parameters of the Shatt Al-Arab River (SAA), southern Iraq. Eight main water quality parameters and three heavy metals were measured from December 2018 to October 2019. The total dissolved solids, chloride, sulfate, and total hardness were compared with previous data that were measured from 2014 to 2018 based on data availability. The geochemical characteristics were also investigated to analyze water quality parameters. The study was performed by selecting eleven stations according to the nature areas of SAA. Water samples were acquired from the eleven stations for four seasons (winter of 2018 through autumn of 2019). Results revealed that total dissolved solids ranged between 950 to 8500 mg/L, total hardness varied from 400 to 2394 mg/L as calcium carbonate (CaCO3), the sulfate ranged from 149 to 1602 mg/L, and chloride ranged from 330 to 3687 mg/L. The results showed that SAA had high salinity with a low hazard of sodicity. The SAA waters mainly fall below the Dolomite-Magnesite tie-lines which indicated the dissolution of carbonate rocks. This research also found that the study area confined from Al-Maqal station to Abu Flus port station where the salty marine water coming from the Arabian Gulf remains for longer periods. The SAA is not suitable for drinking and irrigation water according to Iraqi and World Health Organization (WHO) standards. This study suggested building a blocking dam downstream of the SAA to prevent salty water from coming back from Arabian Gulf.


2019 ◽  
Vol 8 (3) ◽  
pp. 107-111 ◽  
Author(s):  
Amir Mansour Mohammadi ◽  
Mehdi Vafakhah ◽  
Mohammad Reza Javadi

The healthy water resources are necessary and essential prerequisite for environmental protection and economic development, political, social and cultural rights of Iran. In this research, water quality parameters i.e. total dissolved solids (TDS), sodium absorption rate (SAR), electrical conductivity (EC), Na+, Cl-, CO32-, K+, Mg2+, Ca2+, pH, HCO3- and SO42- during 2010-2011 were obtained from Iranian Water Resources Research Institute in water quality measurement stations on Mazandaran province, Iran. Then, the most important catchment characteristics (area, mean slope, mean height, base flow index, annual rainfall, land cover, and geology) were determined on water quality parameters using stepwise regression via backwards method in the 63 selected rivers. The results showed that sodium absorption rate (SAR), total dissolved solids (TDS), electrical conductivity (EC), Na+ and Cl- parameters are strongly linked to geology characteristics, while K+, Mg2+ and Ca2+ cations is linked to rainfall and geology characteristics. pH and HCO3- are related to area, rainfall, land cover and geology characteristics, CO32- is related to area, rainfall, rangeland area and geology characteristics and SO42- is related to area, rainfall, range and bar land area and geology characteristics. Adaptive Neuro-Fuzzy Inference System (ANFIS) was used for modeling the selected catchment characteristics and water quality parameters. The ANFIS models have a high Nash–Sutcliffe model efficiency coefficient (NSE)  and low root mean squares error (RMSE) to estimate water quality parameters.


Author(s):  
Abudulawal L. ◽  
Apanpa K. A.

Abundant as it may seem in Nigeria, access to clean and potable water is a great challenge. Hence the reason for determination of the physico-chemical properties of the groundwater in Agbowo community in Ibadan, Oyo state Southwestern Nigeria for domestic uses. Water samples collected from thirty-four (34) shallow wells with varying depths were subjected to chemical analysis. The water quality parameters were analyzed in accordance to standard methods. The groundwater analysis reviewed includes pH, electrical conductivity, total dissolved solids (TDS), others include Ca<sup>2+</sup>, Mg<sup>2+</sup>, K<sup>+</sup> Na<sup>+</sup>, Fe<sup>2+</sup>, NO<sub>3</sub>, Cl<sup>-</sup> SO<sub>4</sub><sup>2-</sup> and HCO<sub>3</sub><sup>- </sup>The results indicated that the parameters analyzed have some falling within the limits and some above the maximum permissible limits in accordance to Nigeria Industrial Standard (NIS) and World Health Organization (WHO) guidelines for drinking water. In general, the data revealed that maxima and minima concentrations of the priority physico-chemical water quality parameters examined in the thirty-four (34) water points were mostly within the Target Water Quality Range (TWQR) for domestic use with little exceptions at some points. However, high nitrate concentrations and Total Dissolved Solids (TDS) above the permissible limits in some of the well water sampled are causes for serious concern. Poor construction, lack of maintenance, proximity to sewage tank and stream, as well as indiscriminate dumping of refuse are suggested as the major causes of this development. The overall implication of this observation call for sustenance and improved water resource management strategy for the area in order to prevent the deterioration of the water sources quality, which may pose associated health risks and environmental hazards.


Author(s):  
Sherine Ahmed ElBaradei ◽  
Mai Wagih AlSadeq ◽  
Sarah Ehab Abdel Kader

The increase in the evaporation rate is one of the crucial effects of climate change. Water losses due to evaporation are considered as an important challenge that faces the agriculture sector considering the recent water crisis in Egypt. So, covering irrigation canals with the aim to decrease evaporation could be a good solution for this problem, especially if the coverage is expected to be used for power production by covering these canals with solar panels. However, the main concern is the effect of the covering on the quality of water. So, this research study investigates the effect of irrigation canals’ covering on rates of evaporation and some water quality variables specifically total dissolved solids (TDS) and total suspended solids (TSS). The results of the study showed that covering irrigation canals will have a significant effect on water quality parameters. It is found that the studied water quality parameters; TSS and TDS both are decreasing from 56.39 to 56.35 mg/l and from 160.15 to 160.00 mg/l, respectively by increasing the percentage coverage of the canal from 0% to 100%.


2015 ◽  
Vol 8 (1) ◽  
pp. 85-89
Author(s):  
F Zannat ◽  
MA Ali ◽  
MA Sattar

A study was conducted to evaluate the water quality parameters of pond water at Mymensingh Urban region. The water samples were collected from 30 ponds located at Mymensingh Urban Region during August to October 2010. The chemical analyses of water samples included pH, EC, Na, K, Ca, S, Mn and As were done by standard methods. The chemical properties in pond water were found pH 6.68 to 7.14, EC 227 to 700 ?Scm-1, Na 15.57 to 36.00 ppm, K 3.83 to 16.16 ppm, Ca 2.01 to 7.29 ppm, S 1.61 to 4.67 ppm, Mn 0.33 to 0.684 ppm and As 0.0011 to 0.0059 ppm. The pH values of water samples revealed that water samples were acidic to slightly alkaline in nature. The EC value revealed that water samples were medium salinity except one sample and also good for irrigation. According to drinking water standard Mn toxicity was detected in pond water. Considering Na, Ca and S ions pond water was safe for irrigation and aquaculture. In case of K ion, all the samples were suitable for irrigation but unsuitable for aquaculture.J. Environ. Sci. & Natural Resources, 8(1): 85-89 2015


Author(s):  
Vasudha Lingampally ◽  
V.R. Solanki ◽  
D. L. Anuradha ◽  
Sabita Raja

In the present study an attempt has been made to evaluate water quality and related density of Cladocerans for a period of one year, October 2015 to September 2016. Water quality parameters such as temperature, PH, total dissolved solids, dissolved oxygen, biological oxygen demand, total alkalinity, total hardness, chlorides, phosphates, and nitrates are presented here to relate with the abundance of Cladocerans. The Cladoceran abundance reflects the eutrophic nature of the Chakki talab.


Sign in / Sign up

Export Citation Format

Share Document