scholarly journals Semantic Image to Image Translation using Machine Learning Algorithms

In semantic image-to-image translation, the goal will be to learn mapping between an input image and the output image. A model of semantic image to image translation problem using Cycle GAN algorithm is proposed. Given a set of paired or unpaired images a transformation is learned to translate the input image into the specified domain. The dataset considered is cityscape dataset. In the cityscape dataset, the semantic images are converted into photographic images. Here a Generative Adversarial Network algorithm called Cycle GAN algorithm with cycle consistency loss is used. The cycle GAN algorithm can be used to transform the semantic image into a photographic or real image. The cycle consistency loss compares the real image and the output image of the second generator and gives the loss functions. In this paper, the model shows that by considering more training time we get the accurate results and the image quality will be improved. The model can be used when images from one domain needs to be converted into another domain inorder to obtain high quality of images.

2018 ◽  
Vol 10 (10) ◽  
pp. 1597 ◽  
Author(s):  
Dongyang Ao ◽  
Corneliu Octavian Dumitru ◽  
Gottfried Schwarz ◽  
Mihai Datcu

With more and more SAR applications, the demand for enhanced high-quality SAR images has increased considerably. However, high-quality SAR images entail high costs, due to the limitations of current SAR devices and their image processing resources. To improve the quality of SAR images and to reduce the costs of their generation, we propose a Dialectical Generative Adversarial Network (Dialectical GAN) to generate high-quality SAR images. This method is based on the analysis of hierarchical SAR information and the “dialectical” structure of GAN frameworks. As a demonstration, a typical example will be shown, where a low-resolution SAR image (e.g., a Sentinel-1 image) with large ground coverage is translated into a high-resolution SAR image (e.g., a TerraSAR-X image). A new algorithm is proposed based on a network framework by combining conditional WGAN-GP (Wasserstein Generative Adversarial Network—Gradient Penalty) loss functions and Spatial Gram matrices under the rule of dialectics. Experimental results show that the SAR image translation works very well when we compare the results of our proposed method with the selected traditional methods.


Author(s):  
Chaoyue Wang ◽  
Chaohui Wang ◽  
Chang Xu ◽  
Dacheng Tao

In this paper, we propose a principled Tag Disentangled Generative Adversarial Networks (TD-GAN) for re-rendering new images for the object of interest from a single image of it by specifying multiple scene properties (such as viewpoint, illumination, expression, etc.). The whole framework consists of a disentangling network, a generative network, a tag mapping net, and a discriminative network, which are trained jointly based on a given set of images that are completely/partially tagged (i.e., supervised/semi-supervised setting). Given an input image, the disentangling network extracts disentangled and interpretable representations, which are then used to generate images by the generative network. In order to boost the quality of disentangled representations, the tag mapping net is integrated to explore the consistency between the image and its tags. Furthermore, the discriminative network is introduced to implement the adversarial training strategy for generating more realistic images. Experiments on two challenging datasets demonstrate the state-of-the-art performance of the proposed framework in the problem of interest.


Author(s):  
Yihuai Liang ◽  
Dongho Lee ◽  
Yan Li ◽  
Byeong-Seok Shin

AbstractWe consider medical image transformation problems where a grayscale image is transformed into a color image. The colorized medical image should have the same features as the input image because extra synthesized features can increase the possibility of diagnostic errors. In this paper, to secure colorized medical images and improve the quality of synthesized images, as well as to leverage unpaired training image data, a colorization network is proposed based on the cycle generative adversarial network (CycleGAN) model, combining a perceptual loss function and a total variation (TV) loss function. Visual comparisons and experimental indicators from the NRMSE, PSNR, and SSIM metrics are used to evaluate the performance of the proposed method. The experimental results show that GAN-based style conversion can be applied to colorization of medical images. As well, the introduction of perceptual loss and TV loss can improve the quality of images produced as a result of colorization better than the result generated by only using the CycleGAN model.


Optik ◽  
2021 ◽  
Vol 227 ◽  
pp. 166060
Author(s):  
Yangdi Hu ◽  
Zhengdong Cheng ◽  
Xiaochun Fan ◽  
Zhenyu Liang ◽  
Xiang Zhai

Proceedings ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 17
Author(s):  
Andrea Giussani

In the last decade, advances in statistical modeling and computer science have boosted the production of machine-produced contents in different fields: from language to image generation, the quality of the generated outputs is remarkably high, sometimes better than those produced by a human being. Modern technological advances such as OpenAI’s GPT-2 (and recently GPT-3) permit automated systems to dramatically alter reality with synthetic outputs so that humans are not able to distinguish the real copy from its counteracts. An example is given by an article entirely written by GPT-2, but many other examples exist. In the field of computer vision, Nvidia’s Generative Adversarial Network, commonly known as StyleGAN (Karras et al. 2018), has become the de facto reference point for the production of a huge amount of fake human face portraits; additionally, recent algorithms were developed to create both musical scores and mathematical formulas. This presentation aims to stimulate participants on the state-of-the-art results in this field: we will cover both GANs and language modeling with recent applications. The novelty here is that we apply a transformer-based machine learning technique, namely RoBerta (Liu et al. 2019), to the detection of human-produced versus machine-produced text concerning fake news detection. RoBerta is a recent algorithm that is based on the well-known Bidirectional Encoder Representations from Transformers algorithm, known as BERT (Devlin et al. 2018); this is a bi-directional transformer used for natural language processing developed by Google and pre-trained over a huge amount of unlabeled textual data to learn embeddings. We will then use these representations as an input of our classifier to detect real vs. machine-produced text. The application is demonstrated in the presentation.


Author(s):  
Khaled ELKarazle ◽  
Valliappan Raman ◽  
Patrick Then

Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.


2020 ◽  
Author(s):  
Wenjie Liu ◽  
Ying Zhang ◽  
Zhiliang Deng ◽  
Jiaojiao Zhao ◽  
Lian Tong

Abstract As an emerging field that aims to bridge the gap between human activities and computing systems, human-centered computing (HCC) in cloud, edge, fog has had a huge impact on the artificial intelligence algorithms. The quantum generative adversarial network (QGAN) is considered to be one of the quantum machine learning algorithms with great application prospects, which also should be improved to conform to the human-centered paradigm. The generation process of QGAN is relatively random and the generated model does not conform to the human-centered concept, so it is not quite suitable for real scenarios. In order to solve these problems, a hybrid quantum-classical conditional generative adversarial network (QCGAN) algorithm is proposed, which is a knowledge-driven human-computer interaction computing mode in cloud. The purpose of stabilizing the generation process and the interaction between human and computing process is achieved by inputting conditional information in the generator and discriminator. The generator uses the parameterized quantum circuit with an all-to-all connected topology, which facilitates the tuning of network parameters during the training process. The discriminator uses the classical neural network, which effectively avoids the ”input bottleneck” of quantum machine learning. Finally, the BAS training set is selected to conduct experiment on the quantum cloud computing platform. The result shows that the QCGAN algorithm can effectively converge to the Nash equilibrium point after training and perform human-centered classification generation tasks.


Sign in / Sign up

Export Citation Format

Share Document