scholarly journals Tag Disentangled Generative Adversarial Network for Object Image Re-rendering

Author(s):  
Chaoyue Wang ◽  
Chaohui Wang ◽  
Chang Xu ◽  
Dacheng Tao

In this paper, we propose a principled Tag Disentangled Generative Adversarial Networks (TD-GAN) for re-rendering new images for the object of interest from a single image of it by specifying multiple scene properties (such as viewpoint, illumination, expression, etc.). The whole framework consists of a disentangling network, a generative network, a tag mapping net, and a discriminative network, which are trained jointly based on a given set of images that are completely/partially tagged (i.e., supervised/semi-supervised setting). Given an input image, the disentangling network extracts disentangled and interpretable representations, which are then used to generate images by the generative network. In order to boost the quality of disentangled representations, the tag mapping net is integrated to explore the consistency between the image and its tags. Furthermore, the discriminative network is introduced to implement the adversarial training strategy for generating more realistic images. Experiments on two challenging datasets demonstrate the state-of-the-art performance of the proposed framework in the problem of interest.

Author(s):  
Kaizheng Chen ◽  
◽  
Yaping Dai ◽  
Zhiyang Jia ◽  
Kaoru Hirota

In this paper, Spinning Detail Perceptual Generative Adversarial Networks (SDP-GAN) is proposed for single image de-raining. The proposed method adopts the Generative Adversarial Network (GAN) framework and consists of two following networks: the rain streaks generative network G and the discriminative network D. To reduce the background interference, we propose a rain streaks generative network which not only focuses on the high frequency detail map of rainy image, but also directly reduces the mapping range from input to output. To further improve the perceptual quality of generated images, we modify the perceptual loss by extracting high-level features from discriminative network D, rather than pre-trained networks. Furthermore, we introduce a new training procedure based on the notion of self spinning to improve the final de-raining performance. Extensive experiments on the synthetic and real-world datasets demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art methods.


Author(s):  
Khaled ELKarazle ◽  
Valliappan Raman ◽  
Patrick Then

Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.


2021 ◽  
Vol 12 (6) ◽  
pp. 1-20
Author(s):  
Fayaz Ali Dharejo ◽  
Farah Deeba ◽  
Yuanchun Zhou ◽  
Bhagwan Das ◽  
Munsif Ali Jatoi ◽  
...  

Single Image Super-resolution (SISR) produces high-resolution images with fine spatial resolutions from a remotely sensed image with low spatial resolution. Recently, deep learning and generative adversarial networks (GANs) have made breakthroughs for the challenging task of single image super-resolution (SISR) . However, the generated image still suffers from undesirable artifacts such as the absence of texture-feature representation and high-frequency information. We propose a frequency domain-based spatio-temporal remote sensing single image super-resolution technique to reconstruct the HR image combined with generative adversarial networks (GANs) on various frequency bands (TWIST-GAN). We have introduced a new method incorporating Wavelet Transform (WT) characteristics and transferred generative adversarial network. The LR image has been split into various frequency bands by using the WT, whereas the transfer generative adversarial network predicts high-frequency components via a proposed architecture. Finally, the inverse transfer of wavelets produces a reconstructed image with super-resolution. The model is first trained on an external DIV2 K dataset and validated with the UC Merced Landsat remote sensing dataset and Set14 with each image size of 256 × 256. Following that, transferred GANs are used to process spatio-temporal remote sensing images in order to minimize computation cost differences and improve texture information. The findings are compared qualitatively and qualitatively with the current state-of-art approaches. In addition, we saved about 43% of the GPU memory during training and accelerated the execution of our simplified version by eliminating batch normalization layers.


2020 ◽  
Vol 34 (07) ◽  
pp. 10909-10916
Author(s):  
Ligong Han ◽  
Ruijiang Gao ◽  
Mun Kim ◽  
Xin Tao ◽  
Bo Liu ◽  
...  

Conditional generative adversarial networks have shown exceptional generation performance over the past few years. However, they require large numbers of annotations. To address this problem, we propose a novel generative adversarial network utilizing weak supervision in the form of pairwise comparisons (PC-GAN) for image attribute editing. In the light of Bayesian uncertainty estimation and noise-tolerant adversarial training, PC-GAN can estimate attribute rating efficiently and demonstrate robust performance in noise resistance. Through extensive experiments, we show both qualitatively and quantitatively that PC-GAN performs comparably with fully-supervised methods and outperforms unsupervised baselines. Code and Supplementary can be found on the project website*.


2020 ◽  
Vol 10 (13) ◽  
pp. 4528
Author(s):  
Je-Yeol Lee ◽  
Sang-Il Choi 

In this paper, we propose a new network model using variational learning to improve the learning stability of generative adversarial networks (GAN). The proposed method can be easily applied to improve the learning stability of GAN-based models that were developed for various purposes, given that the variational autoencoder (VAE) is used as a secondary network while the basic GAN structure is maintained. When the gradient of the generator vanishes in the learning process of GAN, the proposed method receives gradient information from the decoder of the VAE that maintains gradient stably, so that the learning processes of the generator and discriminator are not halted. The experimental results of the MNIST and the CelebA datasets verify that the proposed method improves the learning stability of the networks by overcoming the vanishing gradient problem of the generator, and maintains the excellent data quality of the conventional GAN-based generative models.


2021 ◽  
Vol 15 (1) ◽  
pp. 71-77
Author(s):  
Dheeraj Kumar ◽  
Mayuri A. Mehta ◽  
Indranath Chatterjee

Introduction: Recent research on Generative Adversarial Networks (GANs) in the biomedical field has proven the effectiveness in generating synthetic images of different modalities. Ultrasound imaging is one of the primary imaging modalities for diagnosis in the medical domain. In this paper, we present an empirical analysis of the state-of-the-art Deep Convolutional Generative Adversarial Network (DCGAN) for generating synthetic ultrasound images. Aims: This work aims to explore the utilization of deep convolutional generative adversarial networks for the synthesis of ultrasound images and to leverage its capabilities. Background: Ultrasound imaging plays a vital role in healthcare for timely diagnosis and treatment. Increasing interest in automated medical image analysis for precise diagnosis has expanded the demand for a large number of ultrasound images. Generative adversarial networks have been proven beneficial for increasing the size of data by generating synthetic images. Objective: Our main purpose in generating synthetic ultrasound images is to produce a sufficient amount of ultrasound images with varying representations of a disease. Methods: DCGAN has been used to generate synthetic ultrasound images. It is trained on two ultrasound image datasets, namely, the common carotid artery dataset and nerve dataset, which are publicly available on Signal Processing Lab and Kaggle, respectively. Results: Results show that good quality synthetic ultrasound images are generated within 100 epochs of training of DCGAN. The quality of synthetic ultrasound images is evaluated using Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM). We have also presented some visual representations of the slices of generated images for qualitative comparison. Conclusion: Our empirical analysis reveals that synthetic ultrasound image generation using DCGAN is an efficient approach. Other: In future work, we plan to compare the quality of images generated through other adversarial methods such as conditional GAN, progressive GAN.


Author(s):  
A. Courtial ◽  
G. Touya ◽  
X. Zhang

Abstract. This article presents how a generative adversarial network (GAN) can be employed to produce a generalised map that combines several cartographic themes in the dense context of urban areas. We use as input detailed buildings, roads, and rivers from topographic datasets produced by the French national mapping agency (IGN), and we expect as output of the GAN a legible map of these elements at a target scale of 1:50,000. This level of detail requires to reduce the amount of information while preserving patterns; covering dense inner cities block by a unique polygon is also necessary because these blocks cannot be represented with enlarged individual buildings. The target map has a style similar to the topographic map produced by IGN. This experiment succeeded in producing image tiles that look like legible maps. It also highlights the impact of data and representation choices on the quality of predicted images, and the challenge of learning geographic relationships.


2021 ◽  
Vol 1 (1) ◽  
pp. 20-22
Author(s):  
Awadelrahman M. A. Ahmed ◽  
Leen A. M. Ali

This paper contributes in automating medical image segmentation by proposing generative adversarial network based models to segment both polyps and instruments in endoscopy images. A main contribution of this paper is providing explanations for the predictions using layer-wise relevance propagation approach, showing which pixels in the input image are more relevant to the predictions. The models achieved 0.46 and 0.70, on Jaccard index and 0.84 and 0.96 accuracy, on the polyp segmentation and the instrument segmentation, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6194
Author(s):  
Minhyeok Lee ◽  
Junhee Seok

Conventional predictive Artificial Neural Networks (ANNs) commonly employ deterministic weight matrices; therefore, their prediction is a point estimate. Such a deterministic nature in ANNs causes the limitations of using ANNs for medical diagnosis, law problems, and portfolio management in which not only discovering the prediction but also the uncertainty of the prediction is essentially required. In order to address such a problem, we propose a predictive probabilistic neural network model, which corresponds to a different manner of using the generator in the conditional Generative Adversarial Network (cGAN) that has been routinely used for conditional sample generation. By reversing the input and output of ordinary cGAN, the model can be successfully used as a predictive model; moreover, the model is robust against noises since adversarial training is employed. In addition, to measure the uncertainty of predictions, we introduce the entropy and relative entropy for regression problems and classification problems, respectively. The proposed framework is applied to stock market data and an image classification task. As a result, the proposed framework shows superior estimation performance, especially on noisy data; moreover, it is demonstrated that the proposed framework can properly estimate the uncertainty of predictions.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Sign in / Sign up

Export Citation Format

Share Document