scholarly journals Brain Tumor Detection and Identification Using Histogram Method

Brain tumor is a collection of unwanted cells that grow abnormally in different parts of human brain. Detection of this is done effectively by MR image scanning of human brain. Certain process can be carried out to partition the input MR images into the regions. To convert these regions into coherent segments is done by Histogram Method which can utilize peaks and valleys to analyze the regions into segment of the MR images. This process can be done by program division method to detect the tumor in the earlier stages .This work aims at it.

Author(s):  
Prabhjot Kaur ◽  
Amardeep Kaur

In the medical field brain tumor detection is an important application. The existing techniques of segmentation has various limitations. Existing techniques ignored the medical images which have poor quality or low brightness. Segmentation becomes the challenging issue as the image contains non-uniform object texture, cluttered objects, different image content and image noise. New technique of segmentation is proposed by research to detect tumor from MR images using firefly algorithm, then tumor is segmented and its features are extracted from MR image.  The main goal of Research to design an algorithm for MRI based brain tumor segmentation using firefly algorithm and to improve the accuracy of the tumor detection. Fireflies produce a reaction in their body which produce light , this chemical reaction is called bioluminescent. By using firefly technique it is possible to detect and localize tumor accurately. For comparative analysis, various parameters are used to demonstrate the superiority of proposed method over the conventional ones.


Author(s):  
Ghazanfar Latif ◽  
D.N.F. Awang Iskandar ◽  
Jaafar Alghazo ◽  
M. Mohsin Butt

Background: Detection of brain tumor is a complicated task which requires specialized skills and interpretation techniques. Accurate brain tumor classification and segmentation from MR images provide an essential choice for medical treatments. The different objects within an MR image have similar size, shape, and density which makes the tumor classification and segmentation even more complex. Objectives: Classification of the brain MR images into tumorous and non-tumorous using deep features and different classifiers to get higher accuracy. Methods: In this study, a novel four-step process is proposed; pre-processing for image enhancement and compression, feature extraction using convolutional neural networks (CNN), classification using the multilayer perceptron and finally, tumor segmentation using enhanced fuzzy c-means method. Results: The system is tested on 65 cases in four modalities consisting of 40,300 MR Images obtained from the BRATS-2015 dataset. These include images of 26 Low-Grade Glioma (LGG) tumor cases and 39 High-Grade Glioma (HGG) tumor cases. The proposed CNN features-based classification technique outperforms the existing methods by achieving an average accuracy of 98.77% and a noticeable improvement in the segmentation results are measured. Conclusion: The proposed method for brain MR image classification to detect Glioma Tumor detection can be adopted as it gives better results with high accuracies.


Author(s):  
Priya Verma et.al., Priya Verma et.al., ◽  

In this research, an automated and customized neoplasm segmentation methodology is given and valid against ground truth applying simulated T1-weighted resonance pictures in twenty five subjects. a replacement intensity-based segmentation technique known as bar graph primarily based gravitational optimization algorithm is developed to segment the brain image into discriminative sections (segments) with high accuracy. whereas the mathematical foundation of this rule is given in details, the appliance of the projected rule within the segmentation of single T1-weighted pictures (T1-w) modality of healthy and lesion MR images is additionally given. The results show that the neoplasm lesion is divided from the detected lesion slice with eighty nine.6% accuracy..


2019 ◽  
Vol 3 (2) ◽  
pp. 27 ◽  
Author(s):  
Md Shahariar Alam ◽  
Md Mahbubur Rahman ◽  
Mohammad Amazad Hossain ◽  
Md Khairul Islam ◽  
Kazi Mowdud Ahmed ◽  
...  

In recent decades, human brain tumor detection has become one of the most challenging issues in medical science. In this paper, we propose a model that includes the template-based K means and improved fuzzy C means (TKFCM) algorithm for detecting human brain tumors in a magnetic resonance imaging (MRI) image. In this proposed algorithm, firstly, the template-based K-means algorithm is used to initialize segmentation significantly through the perfect selection of a template, based on gray-level intensity of image; secondly, the updated membership is determined by the distances from cluster centroid to cluster data points using the fuzzy C-means (FCM) algorithm while it contacts its best result, and finally, the improved FCM clustering algorithm is used for detecting tumor position by updating membership function that is obtained based on the different features of tumor image including Contrast, Energy, Dissimilarity, Homogeneity, Entropy, and Correlation. Simulation results show that the proposed algorithm achieves better detection of abnormal and normal tissues in the human brain under small detachment of gray-level intensity. In addition, this algorithm detects human brain tumors within a very short time—in seconds compared to minutes with other algorithms.


Sign in / Sign up

Export Citation Format

Share Document