scholarly journals Preparation of Magneto Electric (Bafe12o19 / Bifeo3) Composites using Sol-Gel Auto Combustion Method

The coexistence of ferromagnetic and ferroelectric properties in single phase material leads to the existence of new type of material known as magnetoelectric. In present work, magneto electric composites BaFe12O19 / BiFeO3 with different mass percentage of BiFeO3 (0, 25%, 50%, 75% and 100 %) were prepared. BaFe12O19 (BHF) and BiFeO3 (BiF) ferrites were prepared separately using Sol-gel auto combustion method and then physically mixed. Prepared composite samples were characterized using FTIR, XRD, SEM and VSM. XRD spectra reveal the mixed hexaferrite and bismuth ferrite phases. SEM micrograph of showed the formation of porous clusters of non uniform grains in the composites. Saturation magnetization of BaFe12O19 / BiFeO3 composites decreased gradually with increasing in BiFeO3 content and there is no systematic change in coercivity values

2019 ◽  
Vol 33 (19) ◽  
pp. 1950219 ◽  
Author(s):  
Mukhtar Ahmad ◽  
Jawaria Shaheen ◽  
Waseem Abbas Hashmi ◽  
Majid Niaz Akhtar ◽  
Muhammad Asif

In this work, Sr-substituted samples of single-phase spinel monoferrites with chemical formula [Formula: see text] (x = 0.00, 0.33, 0.67, 1.00) were synthesized using sol–gel auto-combustion method. In order to confirm the single-phase formation of these samples, a sample (x = 0.00) was chosen for heat treatment at different temperatures (100, 300, 400, 600 and [Formula: see text]) for 4 h. The heat treated sample was then investigated by X-ray diffraction (XRD) analysis and results showed that a single-phase sample can be successfully synthesized at a temperature of [Formula: see text], which is much lower than that reported in earlier literature for synthesis of same structured samples. All the synthesized samples were then sintered at [Formula: see text] for 4 h to achieve better crystallinity. From XRD patterns, lattice parameters, cell volume and XRD density as a function of Sr-substitution were calculated. Scanning electron microscopy (SEM) results showed that the grain size increased as the temperature was increased. Fourier transform infrared spectroscopy (FTIR) results confirmed the single-phase spinel monoferrites at [Formula: see text]. From M–H loops (x = 0.0, 0.33, 0.67 and 1.00), different magnetic parameters such as saturation magnetization [Formula: see text], remanance [Formula: see text], coercivity [Formula: see text] and magnetic moment [Formula: see text] were calculated. Magnetocrystalline anisotropy constant and Y–K angles of Sr-doped Ba monoferrites were also calculated. In addition, the variation of different dielectric parameters (real permittivity, imaginary permittivity, real permeability, imaginary permeability, ac conductivity and loss tangent) as a function of frequency (1–6 GHz) has been discussed in this work. The results suggest that the synthesized materials have many advantages over previously reported single-phase spinel monoferrites.


2011 ◽  
Vol 25 (11) ◽  
pp. 855-861 ◽  
Author(s):  
M. SHAHMIRZAEI ◽  
S. A. SEYYED EBRAHIMI ◽  
R. DEHGHAN

In this work, a novel method of mechano sol–gel auto-combustion has been developed for production of single phase nickel ferrite nanocrystalline powder, consisting of a sol–gel auto-combustion synthesis followed by a high energy milling process before calcination. Sol–gel auto-combustion was carried out using a gel including citric acid as a reductant and metal nitrates as oxidants. This gel exhibited a self-propagating behavior after ignition in air. The effects of the intermediate high energy milling on the physical properties of the final product after calcination were investigated. The results showed that with a high energy milling of the sol–gel auto-combusted powders with a ball-to-powder mass ratio of 20 for 20 h, the temperature of calcination for synthesis of the single phase ferrite reduced from 1000°C to 700°C and the size of the ferrite crystallites decreased from 72 nm to 15 nm.


2007 ◽  
Vol 280-283 ◽  
pp. 609-612 ◽  
Author(s):  
Hao Sheng ◽  
Zhen Xing Yue ◽  
Zhi Lun Gui ◽  
Long Tu Li

BiFeO3-PbTiO3 powders were synthesized by a novel sol-gel auto-combustion method. The gels, transformed from the aqueous solutions of metal nitrate and citric acid, undergo a selfpropagatingcombustion process when being ignited and yield voluminous ashes. These ashes are single phase perovskite BiFeO3-PbTiO3 powders. The redox behaviors of the dried gels were studied by DTA-TG technique and IR spectra. The synthesized powders were characterized in terms of XRD, SEM and BET techniques.


2012 ◽  
Vol 463-464 ◽  
pp. 1052-1056
Author(s):  
Ai Xiang Zeng ◽  
Jun Yuan

Ni0.6-xZn0.4MgxFe2O4were synthesized by sol-gel auto-combustion method with Zn(NO3.) 2 •6H2O. , Ni(NO3.) )2•6H2O. , Mg(NO3.) )2•6H2O. , Fe(NO3.) )3•9H2O. , COOO2. and NH3•H2O. X-ray diffraction (XRD) analysises show that the sample is single phase and the doping of magnesium makes no difference to nickel-zinc ferrite’s crystal structure; nickel-zinc ferrite has formed after auto-combustion. Scanning electron microscope analysises show that after sintered the sample’s size is more even and the doping of magnesium makes the size smaller and more even too.


2013 ◽  
Vol 209 ◽  
pp. 102-106 ◽  
Author(s):  
Ganapathi Packiaraj ◽  
Nital R. Panchal ◽  
Rajshree B. Jotania

In the present study, a series of Cu substituted M type Barium hexagonal ferrite BaCuxFe12-xO19 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) has been synthesized using a Sol- gel auto combustion method. The aim of the present work was to investigate the effects of Cu/Fe ratio on the crystallography and dielectric properties. The XRD studies reveal a formation of the single phase BaFe12O19 at the initial level and mixed phase of S, M and Y hexaferrite at the higher level of copper substitution. The dielectric measurements were carried out at room temperature in a frequency range of 20 Hz to 2MHz. the dielectric constant is found to decrease with the increase of frequency for all the compositions.


2013 ◽  
Vol 544 ◽  
pp. 17-20
Author(s):  
Yan Feng Zhu ◽  
Wei Liang Liu ◽  
An Hua Wu ◽  
Zhen Qian Feng ◽  
Chuan Yong Wang ◽  
...  

Nanocrystalline LaFeO3 with particle size of about 50 nm was directly synthesized by sol–gel auto-combustion method at room temperature. The overall process involves three steps: formation of homogeneous sol; formation of dried gel; and combustion of the dried gel. Single phase nanocrystalline LaFeO3 powders were successfully synthesized by the sol–gel self-propagation combustion method using glycin (C2H5NO2) as the chelating agent. Discuss the synthesis products by DTA/TG, XRD and SEM. The experiment results show that the LaFeO3 nano-powder was got from dried gel of G/M=1:1 at 300°C ignition temperature and then holding 2h at 800°C.The LaFeO3 nano-powder is about 50nm with excellent dispersibility. The hysteretic loop show LaFeO3 nanopowders have the character of ferromagnetism, the coercivity of the nanocrystalline LaFeO3 is 99G, while the saturation is only 2.8 emug-1.


IARJSET ◽  
2017 ◽  
Vol 4 (2) ◽  
pp. 127-129
Author(s):  
Kshirsagar P M ◽  
Sarnaik M N ◽  
Murumkar V D ◽  
Jadhav K M

2021 ◽  
Author(s):  
Marjaneh Jafari Fesharaki ◽  
Mohammad Reza Jalali ◽  
Leila Karimi ◽  
Ehsan Sadeghi

Abstract Series of CaZrO3:xEu3+ (x=0.01, 0.02, 0.03, 0.04 and 0.05) phosphors have been prepared by low temperature sol-gel auto combustion method. The structure and morphology of the samples were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM). The energy-dispersive X-ray spectroscope (EDX) was employed to analyze the elemental composition of the phosphor. The XRD patterns indicated that the sample was single phase at 350 ◦C with a perovskite structure. The optimum temperature for the single- phase and crystalline phosphors of CaZrO3:xEu3+ was 700 ◦C. Study of photoluminescence (PL) at room temperature showed that the phosphors can be excited by light with a wavelength of 391 nm. The results of emission spectrum showed that the red luminescence of CaZrO3:xEu3+ due to electric dipole transition of 5D0→7F2 was dominant at wavelength of 615 nm and weaker transition at wavelength of 590 nm which was due to magnetic dipole transition of 5D0→7F1. For the thermoluminescence (TL) study the prepared sample irradiated by X-ray lamp, the TL curve was then recorded at fixed heating rate of 2 ◦C/s. The TL glow curve showed well single peak at a temperature of 165 ◦C. The effect of Eu3+ concentration at fixed X-ray exposure time was studied and maximum TL occurred at x=0.02. Also the variation of TL intensity with X-ray time (5 to 15 min) showed linear response with dose. The TL glow peak shows more stability and less fading in prepared phosphor which is suitable for TL dosimetry.


2020 ◽  
Vol 5 (3) ◽  
pp. 236-251
Author(s):  
Eshwara I. Naik ◽  
Halehatty S.B. Naik ◽  
Ranganaik Viswanath

Background: Various interesting consequences are reported on structural, optical, and photoluminescence properties of Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles synthesized by sol-gel auto-combustion route. Objective: This study aimed to examine the effects of Sm3+-doping on structural and photoluminescence properties of ZnO nanoparticles. Methods: Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles were synthesized by sol-gel auto combustion method. Results: XRD patterns confirmed the Sm3+ ion substitution through the undisturbed wurtzite structure of ZnO. The crystallite size was decreased from 24.33 to 18.46 nm with Sm3+ doping. The hexagonal and spherical morphology of nanoparticles was confirmed by TEM analysis. UV-visible studies showed that Sm3+ ion doping improved the visible light absorption capacity of Sm3+ iondoped ZnO nanoparticles. PL spectra of Sm3+ ion-doped ZnO nanoparticles showed an orange-red emission peak corresponding to 4G5/2→6HJ (J=7/2, 9/2 and 11/2) transition of Sm3+ ion. Sm3+ ion-induced PL was proposed with a substantial increase in PL intensity with a blue shift in peak upon Sm3+ content increase. Conclusion: Absorption peaks associated with doped ZnO nanoparticles were moved to a longer wavelength side compared to ZnO, with bandgap declines when Sm3+ ions concentration was increased. PL studies concluded that ZnO emission properties could be tuned in the red region along with the existence of blue peaks upon Sm3+ ion doping, which also results in enhancing the PL intensity. These latest properties related to Sm3+ ion-doped nanoparticles prepared by a cost-efficient process appear to be interesting in the field of optoelectronic applications, which makes them a prominent candidate in the form of red light-emitting diodes.


Sign in / Sign up

Export Citation Format

Share Document