scholarly journals Augmented Reality on Sudoku Puzzle using Computer Vision and Deep Learning

Many people try solving Sudoku puzzles everyday. These puzzles are usually found in newspapers, magazines and so on. Whenever a person is unable to solve a puzzle or is running short on time to solve the puzzle, it will be very convenient to show the solved puzzle as an augmented reality. Objectives: In this paper, we propose an optimal way of recognizing a Sudoku puzzle using computer vision and Deep Learning, and solve the puzzle using constraint programming and backtracking algorithm to display the solved puzzle as augmented reality. Also, a comparative performance analysis with the previous work is provided with this paper. Methods: In order to implement augmented reality on to the Sudoku puzzle, image classification itself won’t be sufficient as the solved puzzle has to be shown on top of the area of the unsolved puzzle in the original image. So puzzle detection has to be performed and for doing so we used CNN and Object Localization algorithms. After the detection we stored the values detected in each 9x9 cells and ran a constraint programming and backtracking algorithm to solve the puzzle and finally filled the detected empty cells with correct values of the solved puzzle. Applications/Improvements: Usually the Sudoku puzzles that we find in newspapers and magazines are surrounded by a lot of noise such as text (characters) irrelevant to the puzzle and borders of the newspaper which could be similar to a Sudoku puzzle structure. In this paper we emphasise on how to handle such disturbances and improve the performance.

2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


2020 ◽  
Vol 226 ◽  
pp. 02020
Author(s):  
Alexey V. Stadnik ◽  
Pavel S. Sazhin ◽  
Slavomir Hnatic

The performance of neural networks is one of the most important topics in the field of computer vision. In this work, we analyze the speed of object detection using the well-known YOLOv3 neural network architecture in different frameworks under different hardware requirements. We obtain results, which allow us to formulate preliminary qualitative conclusions about the feasibility of various hardware scenarios to solve tasks in real-time environments.


Mekatronika ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 49-54
Author(s):  
Arzielah Ashiqin Alwi ◽  
Ahmad Najmuddin Ibrahim ◽  
Muhammad Nur Aiman Shapiee ◽  
Muhammad Ar Rahim Ibrahim ◽  
Mohd Azraai Mohd Razman ◽  
...  

Dynamic gameplay, fast-paced and fast-changing gameplay, where angle shooting (top and bottom corner) has the best chance of a good goal, are the main aspects of handball. When it comes to the narrow-angle area, the goalkeeper has trouble blocked the goal. Therefore, this research discusses image processing to investigate the shooting precision performance analysis to detect the ball's accuracy at high speed. In the handball goal, the participants had to complete 50 successful shots at each of the four target locations. Computer vision will then be implemented through a camera to identify the ball, followed by determining the accuracy of the ball position of floating, net tangle and farthest or smallest using object detection as the accuracy marker. The model will be trained using Deep Learning (DL)  models of YOLOv2, YOLOv3, and Faster R-CNN and the best precision models of ball detection accuracy were compared. It was found that the best performance of the accuracy of the classifier Faster R-CNN produces 99% for all ball positions.


Author(s):  
Mehreen Sirshar ◽  
Syeda Hafsa Ali ◽  
Haleema Sadia Baig

Over the last few decades there has been an exponential growth in IT, motivating IT professionals and scientists to explore new dimensions resulting in the advancement of artificial intelligence and its subcategories like computer vision, deep learning and augmented reality. AR is comparatively a new area which was initially explored for gaming but recently a lot of work has been done in education using AR. Most of this focuses on improving students understanding and motivation. Like any other project, the performance of an AR based project is determined by the customer satisfaction which is usually affected by the theory of triple constraints; cost, time and scope. many studies have shown that most of the projects are under development because they are unable to overcome these constraints and meet project objectives. We were unable to find any notable work done regarding project management for augmented reality systems and application. Therefore, in this paper, we propose a system for management of AR applications which mainly focuses on catering triple constraints to meet desired objectives. Each variable is further divided into subprocesses and by following these processes successful completion of the project can be achieved.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 327
Author(s):  
Ramiz Yilmazer ◽  
Derya Birant

Providing high on-shelf availability (OSA) is a key factor to increase profits in grocery stores. Recently, there has been growing interest in computer vision approaches to monitor OSA. However, the largest and well-known computer vision datasets do not provide annotation for store products, and therefore, a huge effort is needed to manually label products on images. To tackle the annotation problem, this paper proposes a new method that combines two concepts “semi-supervised learning” and “on-shelf availability” (SOSA) for the first time. Moreover, it is the first time that “You Only Look Once” (YOLOv4) deep learning architecture is used to monitor OSA. Furthermore, this paper provides the first demonstration of explainable artificial intelligence (XAI) on OSA. It presents a new software application, called SOSA XAI, with its capabilities and advantages. In the experimental studies, the effectiveness of the proposed SOSA method was verified on image datasets, with different ratios of labeled samples varying from 20% to 80%. The experimental results show that the proposed approach outperforms the existing approaches (RetinaNet and YOLOv3) in terms of accuracy.


2021 ◽  
Author(s):  
Brokoslaw Laschowski ◽  
William McNally ◽  
Alexander Wong ◽  
John McPhee

Robotic exoskeletons require human control and decision making to switch between different locomotion modes, which can be inconvenient and cognitively demanding. To support the development of automated locomotion mode recognition systems (i.e., high-level controllers), we designed an environment recognition system using computer vision and deep learning. We collected over 5.6 million images of indoor and outdoor real-world walking environments using a wearable camera system, of which ~923,000 images were annotated using a 12-class hierarchical labelling architecture (called the ExoNet database). We then trained and tested the EfficientNetB0 convolutional neural network, designed for efficiency using neural architecture search, to predict the different walking environments. Our environment recognition system achieved ~73% image classification accuracy. While these preliminary results benchmark EfficientNetB0 on the ExoNet database, further research is needed to compare different image classification algorithms to develop an accurate and real-time environment-adaptive locomotion mode recognition system for robotic exoskeleton control.


Sebatik ◽  
2020 ◽  
Vol 24 (2) ◽  
pp. 300-306
Author(s):  
Muhamad Jaelani Akbar ◽  
Mochamad Wisuda Sardjono ◽  
Margi Cahyanti ◽  
Ericks Rachmat Swedia

Sayuran merupakan sebutan bagi bahan pangan asal tumbuhan yang biasanya mengandung kadar air tinggi dan dikonsumsi dalam keadaan segar atau setelah diolah secara minimal. Keanekaragaman sayur yang terdapat di dunia menyebabkan keragaman pula dalam pengklasifikasian sayur. Oleh karena itu diperlukan adanya pendekatan digital agar dapat mengenali jenis sayuran dengan cepat dan mudah. Dalam penelitian ini jumlah jenis sayuran yang digunakan sebanyak 7 jenis diantara: brokoli, jagung, kacang panjang, pare, terung ungu, tomat dan kubis. Dataset yang digunakan berjumlah 941 gambar sayur dari 7 jenis sayur, ditambah 131 gambar sayur dari jenis yang tidak terdapat pada dataset, selain itu digunakan 291 gambar selain sayuran. Untuk melakukan klasifikasi jenis sayuran digunakan algoritme Convolutional Neural Network (CNN), yang merupakan salah satu bidang ilmu baru dalam Machine Learning dan berkembang dengan pesat. CNN merupakan salah satu algoritme yang terdapat pada metode Deep Learning dengan memiliki kemampuan yang baik dalam Computer Vision, salah satunya yaitu image classification atau klasifikasi objek citra. Uji coba dilakukan pada lima perangkat selular berbasiskan sistem operasi Android. Python digunakan sebagai bahasa pemrograman dalam merancang aplikasi mobile ini dengan menggunakan modul Tensor flow untuk melakukan training dan testing data. Metode yang dapat digunakan dalam melakukan klasifikasi citra ini yaitu Convolutional Neural Network (CNN). Hasil final test accuracy yang diperoleh yaitu didapat keakuratan mengenali jenis sayuran sebesar 98.1% dengan salah satu hasil pengujian yaitu klasifikasi sayur jagung dengan akurasi sebesar 99.98049%.


Sign in / Sign up

Export Citation Format

Share Document