scholarly journals Classification of Malignant Melanoma and Benign Lung Cancer by using Deep Learning Based Neural Network

Humanoid Tumor is one of the utmost hazardous syndromes which is mostly affected by heritable uncertainty of manifold molecular modifications. Midst numerous methods of humanoid tumor, Lung cancer is the utmost communal one. To classify Lung cancer at an initial phase and examine them over several procedures entitled as segmentation and feature extraction. Here, in this scheme is suggested to emphasis extraordinary attentiveness of Melanoma Heir which bases the Lung Cancer. This development is based on samples replica skill is used for malignant melanoma Lung tumor recognition. In this scheme dissimilar stage for melanoma Lung cancer lesion classification i.e., first the Image Gaining Method, preprocessing, separation, define piece for Lung cancer Feature Collection regulates lesion description, classification methods. In the Feature abstraction by numerical image treating method includes, regularity detection, Border Detection, color, and width discovery and also we used GLCM for excerpt the surface based features. Here we planned the Neural Network to categorize the benign or malignant stage.

This paper propose a clever method for the development to raise the over all performance of computeraid diagnosis and for computer, pulmonary nodule identity computed to mography snapshots that digital image and communication in the medicine formats. The preliminary segment in willpower of any variation from the norm in lung locale is to benefit a computer tomography photo.The advanced organization of the picture is very convenient, consequently the extraction and sharing of significant information. The substantial number of related pictures represent a test in soundness and thusly touching base at the end. The cad framework is planned and created to fragment the lung tumor district and concentrate on the highlights which are of the area of intrigue. The detection procedure involve of two stages, to be specific Lung division and feature extraction. In segmentation of lung region, fuzzy c implied ,GLCM primarily based algorithms are implemented. The extracted functions the design of comparable region of the internet use to teach the neural network. Finally these properties are used for analysis lung tumor as benign or malignant. The important goal for this method is reduce fake fantastic charge and to enhance the get entry to time and reduce interobserver variability.


1991 ◽  
Vol 45 (10) ◽  
pp. 1706-1716 ◽  
Author(s):  
Mark Glick ◽  
Gary M. Hieftje

Artificial neural networks were constructed for the classification of metal alloys based on their elemental constituents. Glow discharge-atomic emission spectra obtained with a photodiode array spectrometer were used in multivariate calibrations for 7 elements in 37 Ni-based alloys (different types) and 15 Fe-based alloys. Subsets of the two major classes formed calibration sets for stepwise multiple linear regression. The remaining samples were used to validate the calibration models. Reference data from the calibration sets were then pooled into a single set to train neural networks with different architectures and different training parameters. After the neural networks learned to discriminate correctly among alloy classes in the training set, their ability to classify samples in the testing set was measured. In general, the neural network approach performed slightly better than the K-nearest neighbor method, but it suffered from a hidden classification mechanism and nonunique solutions. The neural network methodology is discussed and compared with conventional sample-classification techniques, and multivariate calibration of glow discharge spectra is compared with conventional univariate calibration.


2021 ◽  
Vol 11 ◽  
Author(s):  
Huanhuan Li ◽  
Long Gao ◽  
He Ma ◽  
Dooman Arefan ◽  
Jiachuan He ◽  
...  

ObjectivesTo evaluate the effectiveness of radiomic features on classifying histological subtypes of central lung cancer in contrast-enhanced CT (CECT) images.Materials and MethodsA total of 200 patients with radiologically defined central lung cancer were recruited. All patients underwent dual-phase chest CECT, and the histological subtypes (adenocarcinoma (ADC), squamous cell carcinoma (SCC), small cell lung cancer (SCLC)) were confirmed by histopathological samples. 107 features were used in five machine learning classifiers to perform the predictive analysis among three subtypes. Models were trained and validated in two conditions: using radiomic features alone, and combining clinical features with radiomic features. The performance of the classification models was evaluated by the area under the receiver operating characteristic curve (AUC).ResultsThe highest AUCs in classifying ADC vs. SCC, ADC vs. SCLC, and SCC vs. SCLC were 0.879, 0.836, 0.783, respectively by using only radiomic features in a feedforward neural network.ConclusionOur study indicates that radiomic features based on the CECT images might be a promising tool for noninvasive prediction of histological subtypes in central lung cancer and the neural network classifier might be well-suited to this task.


Author(s):  
Soha Abd Mohamed El-Moamen ◽  
Marghany Hassan Mohamed ◽  
Mohammed F. Farghally

The need for tracking and evaluation of patients in real-time has contributed to an increase in knowing people’s actions to enhance care facilities. Deep learning is good at both a rapid pace in collecting frameworks of big data healthcare and good predictions for detection the lung cancer early. In this paper, we proposed a constructive deep neural network with Apache Spark to classify images and levels of lung cancer. We developed a binary classification model using threshold technique classifying nodules to benign or malignant. At the proposed framework, the neural network models training, defined using the Keras API, is performed using BigDL in a distributed Spark clusters. The proposed algorithm has metrics AUC-0.9810, a misclassifying rate from which it has been shown that our suggested classifiers perform better than other classifiers.


Author(s):  
A Haris Rangkuti

 This paper introduces a classification of the image of the batik process, which is based on the similarity of the characteristics, by combining the method of wavelet transform Daubechies type 2 level 2, to process the characteristic texture consisting of standard deviation, mean and energy as input variables, using the method of Fuzzy Neural Network (FNN). Fuzzyfikasi process will be carried out all input values with five categories: Very Low (VL), Low (L), Medium (M), High (H) and Very High (VH). The result will be a fuzzy input in the process of neural network classification methods. The result will be a fuzzy input in the process of neural network classification methods. For the image to be processed seven types of batik motif is ceplok, kawung, lereng, parang, megamendung, tambal and nitik. The results of the classification process with FNN is rule generation, so for the new image of batik can be immediately known motif types after treatment with FNN classification.  For the degree of precision of this method is 86-92%.


2021 ◽  
pp. 20210038
Author(s):  
Wutian Gan ◽  
Hao Wang ◽  
Hengle Gu ◽  
Yanhua Duan ◽  
Yan Shao ◽  
...  

Objective: A stable and accurate automatic tumor delineation method has been developed to facilitate the intelligent design of lung cancer radiotherapy process. The purpose of this paper is to introduce an automatic tumor segmentation network for lung cancer on CT images based on deep learning. Methods: In this paper, a hybrid convolution neural network (CNN) combining 2D CNN and 3D CNN was implemented for the automatic lung tumor delineation using CT images. 3D CNN used V-Net model for the extraction of tumor context information from CT sequence images. 2D CNN used an encoder–decoder structure based on dense connection scheme, which could expand information flow and promote feature propagation. Next, 2D features and 3D features were fused through a hybrid module. Meanwhile, the hybrid CNN was compared with the individual 3D CNN and 2D CNN, and three evaluation metrics, Dice, Jaccard and Hausdorff distance (HD), were used for quantitative evaluation. The relationship between the segmentation performance of hybrid network and the GTV volume size was also explored. Results: The newly introduced hybrid CNN was trained and tested on a dataset of 260 cases, and could achieve a median value of 0.73, with mean and stand deviation of 0.72 ± 0.10 for the Dice metric, 0.58 ± 0.13 and 21.73 ± 13.30 mm for the Jaccard and HD metrics, respectively. The hybrid network significantly outperformed the individual 3D CNN and 2D CNN in the three examined evaluation metrics (p < 0.001). A larger GTV present a higher value for the Dice metric, but its delineation at the tumor boundary is unstable. Conclusions: The implemented hybrid CNN was able to achieve good lung tumor segmentation performance on CT images. Advances in knowledge: The hybrid CNN has valuable prospect with the ability to segment lung tumor.


Author(s):  
Mohd Azlan Abu ◽  
Syazwani Rosleesham ◽  
Mohd Zubir Suboh ◽  
Mohd Syazwan Md Yid ◽  
Zainudin Kornain ◽  
...  

<span>This paper presents the classification of EMG signal for multiple hand gestures based on neural network. In this study, the Electromyography is used to measure the muscle cell’s electrical activities which is commonly represented in a function time. Every muscle has their own signals, which was produced in every movement. Surface electromyography (sEMG) is used as a non-invasive technique for acquiring the EMG signal. The development of sensors’ detection and measuring the EMG have been improved and have become more precise while maintaining a small size. In this paper, the main objective is to identify the hand gestures based on: (1) Cylindrical Grasp, (2) Supination (Twist Left), (3) Pronation (Twist Right), (4) Resting Hand and (5) Open Hand that are predefined by using Arduino IDE, CoolTerm software and Microsoft Excel before using artificial neural network for classifying purposes in MATLAB. Finally, the extraction of the EMG patterns for each movement went through features extraction of the signals which is used to train the classifier in MATLAB to classify signals in the neural network. The features extracted are using mean absolute value (MAV), median, waveform length (WL) and root mean square (RMS). The Artificial Neural Network (ANN) produced accuracy of 80% for training and testing for 10 hidden neurons layer.</span>


2021 ◽  
Vol 2131 (3) ◽  
pp. 032084
Author(s):  
N E Babushkina ◽  
A A Lyapin

Abstract The article sets the task of classifying various materials and determining their belonging to a specified group using a recurrent neural network. The practical significance of the article is to obtain the results of the neural network, confirming the possibility of classifying materials by the hardness parameter using a neural network. As part of the study, a number of experimental measurements were carried out. The structure of the neural network and its main components are described. The statistical parameters of the experimental data are estimated.


Sign in / Sign up

Export Citation Format

Share Document