scholarly journals Exploration of Attacks Originate by Clone Node in Wireless Sensor Network

Wireless sensor networks are used today in numerous applications. Due to the limited battery, storage and processing power, the sensor node absorbs the environment and sends data to the base station. Wireless sensor networks are vulnerable to various attacks due to their limited functionality. Clone node is the attack where adversary physically grabs the node from its location & generates various nodes by using secret information and reflects them on the network. Due to node cloning, various attacks can easily occur in WSN. In this paper, we describe the layer by layer attacks generated by the clone node in WSN. We compare the network scenarios in Network Simulator 2 in which first scenario are normal network & second scenario has the clone nodes which produce the attack inside network. We estimate the impact of clone node in form of packet loss and also compare packet loss rate in normal network and clone node containing network in 8 different scenarios.

2021 ◽  
Vol 17 (12) ◽  
pp. 155014772110391
Author(s):  
Yuvaraja Teekaraman ◽  
Hariprasath Manoharan ◽  
Ramya Kuppusamy ◽  
Shabana Urooj ◽  
Fadwa Alrowais

This article focuses on intensifying in-vehicle biological wireless sensor networks for the persistence of monitoring the information on a precise vehicle. The wireless sensor networks will have enormous amount of nodules which are interrelated with each other. Therefore, these wireless sensor networks can be installed on a vehicle not only for monitoring perseverance but also for corroborating security with the support of a Global Positioning System expedient. In addition, the projected work focuses on reliable communiqué which is defined in terms of network reliability with discrepancy in reporting rate at each base station. To validate the efficiency of the proposed scheme, the simulation has been abetted using network simulator (NS2) and the outcomes indicate that when the sensors are installed, a robust system can be obtained with improved data transfer between the base stations. Moreover, a fortified in-vehicular sensor can be fixed in each vehicle with minimized path loss.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 161
Author(s):  
P Balamurugan ◽  
M Shyamala Devi ◽  
V Sharmila

In wireless sensor networks, Sensor nodes are arranged randomly in unkind physical surroundings to collect data and distribute the data to the remote base station. However the sensor nodes have to preserve the power source that has restricted estimation competence. The sensed information is difficult to be transmitted over the sensor network for a long period of time in an energy efficient manner.  In this paper, it finds the problem of communication data between sink nodes and remote data sources via intermediate nodes in sensor field. So this paper proposes a score based data gathering algorithm in wireless sensor networks. The high-level contribution of this study is the enhancement of a score- based data gathering algorithm and the impact of energy entity for Wireless Sensor Networks.  Then the energy and delay of data gathering are evaluated. Unlike PEGASIS and LEACH, the delay for every process of data gathering is considerably lower when SBDG is employed.  The energy consumed per round of data gathering for both SBDG and EE-SBDG is less than half of that incurred with PEGASIS and LEACH. Compared with LEACH and PEGASIS, SBDG and EE-SBDG are fair with node usage because of the scoring system and residual energy respectively.  Overall, the Score-based data gathering algorithm provides a significant solution to maximize the network lifetime as well as minimum delay per round of data gathering.


Author(s):  
Mahendra Sharma ◽  
Santhosh Kumar Singh

Wireless Sensor Networks (WSNs) assume a crucial part in the field of mechanization and control where detecting of data is the initial step before any automated job could be performed. So as to encourage such perpetual assignments with less vitality utilization proportion, clustering is consolidated everywhere to upgrade the system lifetime. Unequal Cluster-based Routing (UCR) [7] is a standout amongst the most productive answers for draw out the system lifetime and to take care of the hotspot issue that is generally found in equivalent clustering method. In this paper, we propose Tentative Route (TRS) Selection approach for irregular Clustered Wireless Sensor Networks that facilitates in decision an efficient next relay to send the data cumulative by Cluster Heads to the Base Station. Simulation analysis is achieved using the network simulator to demonstrate the effectiveness of the TRS method.


2018 ◽  
Vol 7 (2.4) ◽  
pp. 153
Author(s):  
Harkesh Sehrawat ◽  
Yudhvir Singh ◽  
Vikas Siwach

A Wireless Sensor Network (WSNs) is a collection of number of sensor nodes which are left open in an unsecured environment. Sensor nodes work and communicate together to attain the desired goals. They are placed at the locations where monitoring is otherwise impossible. Wireless Sensor Networks are resource constrained which may be computational power, memory capacity, battery power etc. As Wireless Sensor Networks are implemented in the unattended environment, they are prone to discrete type of security attacks. Because of their limitations these networks are easily targeted by intruders. Sinkhole attack is one of the security attacks which try to disturb the ongoing communication in wireless sensor network. In sinkhole attack, the intruder or the malicious node try to attract the network traffic towards itself, that sensor nodes will pass data packets through this compromised node thereby manipulating messages which sensor nodes are transferring to the base station. In this paper we analyze the impact of Sinkhole attack on AODV protocol under various conditions. We analyzed the impact of Sinkhole attack on AODV protocol with varying number of attacker nodes.  


Wireless Sensor Network consists of a greater number of sensor nodes and recent advance is in wireless communications and it serves a backbone for controlling the real time applications. It consists of group of sensor nodes and that is sense the information from the event area and it is passes through the base station and which it reacts according to environment and to provide a large-scale monitoring and sensor measurement in a high temporal and the spatial resolution. The researcher uses a different algorithm in that they use a distributed energy fuzzy logic to reduce a packet loss. Wireless Sensor Networks are unprotected to many kinds of the security threats which can decrease the performance of network and cause the sensors to send wrong data to destination. The hostile node in the network is working as an attacker node and it takes all the information packets which is delivered through them. In this paper we propose an intrusion detection system algorithm against the packet dropping. Intrusion detection algorithm solves the problem by analyzing the network by detecting the abnormal node. Then the abnormal node is corrected into normal node with the help of intrusion detection algorithm.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


Author(s):  
Neetika Jain ◽  
Sangeeta Mittal

Background: Real Time Wireless Sensor Networks (RT-WSN) have hard real time packet delivery requirements. Due to resource constraints of sensors, these networks need to trade-off energy and latency. Objective: In this paper, a routing protocol for RT-WSN named “SPREAD” has been proposed. The underlying idea is to reserve laxity by assuming tighter packet deadline than actual. This reserved laxity is used when no deadline-meeting next hop is available. Objective: As a result, if due to repeated transmissions, energy of nodes on shortest path is drained out, then time is still left to route the packet dynamically through other path without missing the deadline. Results: Congestion scenarios have been addressed by dynamically assessing 1-hop delays and avoiding traffic on congested paths. Conclusion: Through extensive simulations in Network Simulator NS2, it has been observed that SPREAD algorithm not only significantly reduces miss ratio as compared to other similar protocols but also keeps energy consumption under control. It also shows more resilience towards high data rate and tight deadlines than existing popular protocols.


2016 ◽  
Vol 26 (1) ◽  
pp. 17
Author(s):  
Carlos Deyvinson Reges Bessa

ABSTRACTThis work aims to study which wireless sensor network routing protocol is more suitable for Smart Grids applications, through simulation of AODV protocols, AOMDV, DSDV and HTR in the NS2 simulation environment. Was simulated a network based on a residential area with 47 residences, with one node for each residence and one base station, located about 25m from the other nodes. Many parameters, such as packet loss, throughput, delay, jitter and energy consumption were tested.  The network was increased to 78 and 93 nodes in order to evaluate the behavior of the protocols in larger networks. The tests proved that the HTR is the routing protocol that has the best results in performance and second best in energy consumption. The DSDV had the worst performance according to the tests.Key words.- Smart grid, QoS analysis, Wireless sensor networks, Routing protocols.RESUMENEste trabajo tiene como objetivo estudiar el protocolo de enrutamiento de la red de sensores inalámbricos es más adecuado para aplicaciones de redes inteligentes, a través de la simulación de protocolos AODV, AOMDV, DSDV y HTR en el entorno de simulación NS2. Se simuló una red basada en una zona residencial con 47 residencias, con un nodo para cada residencia y una estación base, situada a unos 25 metros de los otros nodos. Muchos parámetros, tales como la pérdida de paquetes, rendimiento, retardo, jitter y el consumo de energía se probaron. La red se incrementó a 78 y 93 nodos con el fin de evaluar el comportamiento de los protocolos de redes más grandes. Las pruebas demostraron que el HTR es el protocolo de enrutamiento que tiene los mejores resultados en el rendimiento y el segundo mejor en el consumo de energía. El DSDV tuvo el peor desempeño de acuerdo a las pruebas.Palabras clave.- redes inteligentes, análisis de calidad de servicio, redes de sensores inalámbricas, protocolos de enrutamiento.


Sign in / Sign up

Export Citation Format

Share Document