scholarly journals Bayesian Localized Energy Optimized Sensor Distribution for Efficient Target Tracking

In wireless sensor network application, the localization of nodes are carried out for extended life time of the node. Many applications in wireless sensor network perform localization of nodes over an extended period of time with energy variance. However, optimal selection algorithm poses new challenges to the overall transmission power levels for target detection, and thus localized energy optimized sensor management strategies are necessary for improving the accuracy of target tracking. In this work, it is proposed to develop a Bayesian Localized Energy Optimized Sensor Distribution (BLEOSD) scheme for efficient target tracking in Wireless Sensor Network. The sensor node localized with Bayesian average scheme thatestimates the sensor node’s energy are optimized as per data transfer capacity verification. The Bayesian average energy level of the sensor network is compared with the energy of each sensor node. The sensor nodes are localized and energy distribution based on the Bayesian energy estimate for efficient target tracking. The sensor node distribution strategy improves the accuracyto identify the targets effectively. Experiments are conducted using simulation of WSN by varying number of nodes, energy levels of the node and target object density using the Network Simulator Tool (NS2) The proposed BLEOSD technique is compared with various recent methods by evaluating accuracy of target tracking, energy consumption rate, localized node density and time for target tracking. The experimental results shows that the performance of BLESOD is more encouraging compared to contemporary methods.

2013 ◽  
Vol 347-350 ◽  
pp. 1920-1923
Author(s):  
Yu Jia Sun ◽  
Xiao Ming Wang ◽  
Fang Xiu Jia ◽  
Ji Yan Yu

The characteristics and the design factors of wireless sensor network node are talked in this article. According to the design factors of wireless sensor network, this article will mainly point out the design of wireless sensor nodes based a Cortex-M3 Microcontroller STM32F103RE chip. And the wireless communication module is designed with a CC2430 chip. Our wireless sensor node has good performance in our test.


Author(s):  
Alonshia S. Elayaraja

Many applications in wireless sensor networks perform localization of nodes over an extended period of time. Optimal selection algorithm poses new challenges to the overall transmission power levels for target detection, and thus, localized energy optimized sensor management strategies are necessary for improving the accuracy of target tracking. In this chapter, a proposal plan to develop a Bayesian localized energy optimized sensor distribution scheme for efficient target tracking in wireless sensor network is designed. The sensor node localization is done with Bayesian average, which estimates the sensor node's energy optimality. Then the sensor nodes are localized and distributed based on the Bayesian energy estimate for efficient target tracking. The sensor node distributional strategy improves the accuracy of identifying the targets to be tracked quickly. The performance is evaluated with parameters such as accuracy of target tracking, energy consumption rate, localized node density, and time for target tracking.


2020 ◽  
pp. 857-880
Author(s):  
Madhuri Rao ◽  
Narendra Kumar Kamila

Wireless Sensor nodes are being employed in various applications like in traffic control, battlefield, and habitat monitoring, emergency rescue, aerospace systems, healthcare systems and in intruder tracking recently. Tracking techniques differ in almost every application of Wireless Sensor Network (WSN), as WSN is itself application specific. The chapter aims to present the current state of art of the tracking techniques. It throws light on how mathematically target tracking is perceived and then explains tracking schemes and routing techniques based on tracking techniques. An insight of how to code localization techniques in matlab simulation tool is provided and analyzed. It further draws the attention of the readers to types of tracking scenarios. Some of the well established tracking techniques are also surveyed for the reader's benefit. The chapter presents with open research challenges that need to be addressed along with target tracking in wireless sensor networks.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Juan Feng ◽  
Hongwei Zhao ◽  
Baowang Lian

In target tracking wireless sensor network, choosing the proper working nodes can not only minimize the number of active nodes, but also satisfy the tracking reliability requirement. However, most existing works focus on selecting sensor nodes which are the nearest to the target for tracking missions and they did not consider the correlation of the location of the sensor nodes so that these approaches can not meet all the goals of the network. This work proposes an efficient and adaptive node selection approach for tracking a target in a distributed wireless sensor network. The proposed approach combines the distance-based node selection strategy and particle filter prediction considering the spatial correlation of the different sensing nodes. Moreover, a joint distance weighted measurement is proposed to estimate the information utility of sensing nodes. Experimental results show that EANS outperformed the state-of-the-art approaches by reducing the energy cost and computational complexity as well as guaranteeing the tracking accuracy.


Author(s):  
Monjul Saikia

The wireless sensor network is a collection of sensor nodes that operate collectively to gather sensitive data from a target area. In the process of data collection the location of sensor nodes from where data is originated matters for taking any decision at the base station. Location i.e. the coordinates of a sensor node need to be shared among other nodes in many circumstances such as in key distribution phase, during routing of packets and many more. Secrecy of the location of every sensor node is important in any such cases. Therefore, there must be a location sharing scheme that facilitates the sharing of location among sensor nodes securely. In this paper, we have proposed a novel secure and robust mechanism for location sharing scheme using 2-threshold secret sharing scheme. The implementation process of the proposed model is shown here along with results and analysis.


Author(s):  
Madhuri Rao ◽  
Narendra Kumar Kamila

Wireless Sensor nodes are being employed in various applications like in traffic control, battlefield, and habitat monitoring, emergency rescue, aerospace systems, healthcare systems and in intruder tracking recently. Tracking techniques differ in almost every application of Wireless Sensor Network (WSN), as WSN is itself application specific. The chapter aims to present the current state of art of the tracking techniques. It throws light on how mathematically target tracking is perceived and then explains tracking schemes and routing techniques based on tracking techniques. An insight of how to code localization techniques in matlab simulation tool is provided and analyzed. It further draws the attention of the readers to types of tracking scenarios. Some of the well established tracking techniques are also surveyed for the reader's benefit. The chapter presents with open research challenges that need to be addressed along with target tracking in wireless sensor networks.


2019 ◽  
Vol 16 (9) ◽  
pp. 3925-3931
Author(s):  
Bhupesh Gupta ◽  
Sanjeev Rana

For resource constraint network, one uses wireless sensor network in which limited resources are there for sensor nodes. Basic aim of sensor node is to sense something, monitor it and explain it. The issue arises for sensor node is its battery endurance. The battery endurance of sensor node is consuming in communication instead of sensing. In this regard clustering is using now a day’s which reduces endurance consumption. This paper comes with a new clustering protocol MESAEED (Mutual Exclusive Sleep Awake Energy Efficient Distributed clustering), which helps in saving endurance of sensor nodes so that network lifetime will prolong. It is an extension work of previous work MESADC. In previous work cluster head is chooses on the basis of sleep awake mode in mutual exclusive way under communication range and the results were obtained with the help of comparison graph between HEED and MESADC. The proposed MESAEED protocol provides benefit of A* algorithm of heuristic search, HEED and MESADC. MATLAB 8.3 is use for simulation purpose. The comparison graph between HEED, MESADC and proposed MESAEED were shown. Parameters for comparison include alive nodes versus number of rounds taken and number of nodes dead versus number of rounds taken. The graph shows improvement in performance over HEED and MESADC, which results in enhancing lifetime of WSN.


2013 ◽  
Vol 321-324 ◽  
pp. 515-522 ◽  
Author(s):  
Kou Lin Yuan ◽  
Lin Qiao ◽  
Lei Han

This paper proposes a level and cluster based routing approach for a wireless sensor network. Nodes in the network are divided into several levels according to their hops to sink node. Every sensor node has a level number. Using level information, a sensor node can send messages to a sink node in a more efficient way, and a sink node can easily locate other sensor nodes. To make network more balanced, the paper introduces a cluster method, which splits nodes in the same level into different clusters, and chooses a cluster head for every cluster, to switch nodes in the cluster to work in turn. Unlike all other cluster routing methods, a cluster head node takes schedule jobs of sensor nodes in the cluster according to their energy left, instead of sensing. The paper also presents several algorithms for constructing a wireless sensor network, querying and scheduling. The simulation experiment shows that the scalability of our method is approximately linear.


2019 ◽  
Vol 8 (4) ◽  
pp. 2440-2448

Wireless sensor networks have a lot of sensor nodes that are small, cheap and resource-constraints, but are often used to perform various monitoring operations in unmanned and demanding environments. Networks are vulnerable to different application-based and application-independent attacks. We examine node replication attacks, which are typical threats in the sensor network. In this attack, the enemy generates its own sensor node using stealing sensor from network. The attacker physically occupies the node, takes his secret credentials, and duplicates a large number of nodes with some controlled counterparts. The defense against clone node attacks has become an important research element in the safety of the sensor network. In this study, we classify and examine the different proposals in each category. We also compare the memory and communication cost of different clone node detection approach.


Repositor ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 79
Author(s):  
Rino Nugroho ◽  
Mahar Faiqurahman ◽  
Zamah Sari

Wireless Sensor Network (WSN) is a wireless network consisting of one or more nodes even numbering thousands. The nodes in the wireless sensor network (WSN) consist of sensor nodes and sink nodes. The use of wireless sensors on the network can form a node that can communicate with each other. The communication process generally uses a pull mechanism that precedes the data query process from the node to node sensor that provides sensing data. In some wireless sensor node architecture, this pull mechanism is considered less effective because the node sink must first request data to the sensor node. Alternative, a push message mechanism can be used to transmit sensed data within specified or determined time intervals.In this research is implemented push message mechanism by using restful web service in wireless sensor communications. Test results on the delivery of data by push data transmission obtained to sink nodes alternately in accordance with the order of destination address listed or stored in memory sensor node. And in doing data delivery to be efficient in the absence of data requests at any time.


Sign in / Sign up

Export Citation Format

Share Document