scholarly journals An Improved Leach Algorithm Based on Wireless Sensor Networks

2019 ◽  
Vol 8 (2S8) ◽  
pp. 1623-1628

In our current generation, wireless sensor network is much in use and has become quintessential. With wide improvement of technology and the various ranges developed in communication and in other aspects, this document mainly focuses on the LEACH algorithm (Adaptive Low Energy Hierarchy) and the second most important methodology used is the SEP (stable election protocol). We have discovered improvements in energy efficiency by comparing our results with these two algorithms and the sensor mortality rate is reduced to a greater extent. This research proposes an improved computation algorithm method for the calculation of LEACH clustering, by considering the importance of the cluster heads and the sensor nodes present, T (n) is reorganisedrecommendinga procedure that focuses on reducing the energy consumption. The combined rate of information is found by allowing cluster heads to gather information before it is sent to base station. This improved computation algorithmwill be able to increase vital utilisation of networks and increase sensor life.

Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


2012 ◽  
Vol 433-440 ◽  
pp. 5228-5232
Author(s):  
Mohammad Ahmadi ◽  
Hamid Faraji ◽  
Hossien Zohrevand

A sensor network has many sensor nodes with limited energy. One of the important issues in these networks is the increase of the life time of the network. In this article, a clustering algorithm is introduced for wireless sensor networks that considering the parameters of distance and remaining energy of each node in the process of cluster head selection. The introduced algorithm is able to reduce the amount of consumed energy in the network. In this algorithm, the nodes that have more energy and less distance from the base station more probably will become cluster heads. Also, we use algorithm for finding the shortest path between cluster heads and base station. The results of simulation with the help of Matlab software show that the proposed algorithm increase the life time of the network compared with LEACH algorithm.


2014 ◽  
Vol 614 ◽  
pp. 472-475 ◽  
Author(s):  
Jin Gang Cao

Due to limited energy, computing ability, and memory of Wireless sensor Networks(WSN), routing issue is one of the key factors for WSN. LEACH is the first clustering routing protocol, which can efficiently reduce the energy consumption and prolong the lifetime of WSN, but it also has some disadvantage. This paper proposed an improvement based LEACH, called LEACH-T. According to different number of clusters, LEACH-T uses variable time slot for different clusters in steady-state phase, and single-hop or multi-hop to transmit data between cluster heads and Base Station. Also it considered residual energy of sensor nodes and the optimal number of clusters during selection of the cluster heads. The simulation results show that LEACH-T has better performance than LEACH for prolonging the lifetime and reducing the energy consumption.


2020 ◽  
Vol 17 (6) ◽  
pp. 2658-2663
Author(s):  
Anju Rani ◽  
Amit Kumar Bindal

Presently, Wireless Sensor Networks (WSNs) is quickest developing technology which broadly embracing for different application services including; climate observing, traffic expectation, reconnaissance, research and scholastic fields and so on. As the sensor nodes are haphazardly conveyed in remote condition, security measurements turns out to be most encouraging test where correspondence wirelesses systems confronting today. The Stable Election Protocol (SEP) is an enhanced algorithm of Adaptive Clustering Hierarchy (LEACH) with low energy in heterogeneous Wireless Sensor Network (WSN) for improving the life cycle. Be that as it may, the unequal energy circulation of cluster heads and nodes would diminish the lifetime. From one perspective, adding node vitality to cluster head selection to decrease the energy utilization of cluster heads; on the contrary, decline the energy utilization of nodes in cluster through not directly transmitted by interlude nodes. SEP, a protocol of heterogeneous-aware to drag out the time interim before the passing of the first node (we allude to as steady period), which is essential for some applications where the input from the sensor arrange must be solid. SEP depends on weighted election decision probabilities of every node to turn into cluster head as indicated by the rest of the energy in every node. The outcomes show that the E-SEP protocol functions admirably in adjusting the vitality utilization for improving the lifetime looking at LEACH and SEP protocol with enhanced SEP along with proposed E-SEP algorithm using MATLAB.


Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 125 ◽  
Author(s):  
Liquan Zhao ◽  
Qi Tang

In the Threshold-Sensitive Stable Election Protocol, sensors are randomly deployed in the region without considering the balanced energy consumption of nodes. If a node that has been selected as a cluster head is located far away from the base station, it will affect the efficiency of the network due to its early death. This paper proposes an improved energy efficient routing protocol named Improved Threshold-Sensitive Stable Election protocol (ITSEP) for heterogeneous wireless sensor networks. Firstly, we use a node state transformation mechanism to control the number of cluster heads in high-density node areas. Secondly, the proposed protocol improves the threshold formula by considering the distance from the node to the base station, the number of neighbor nodes, its residual energy, and the average distance between nodes. In addition, an optimal route with minimum energy consumption for cluster heads has been selected throughout data transmission. Simulation results show that this algorithm has achieved a longer lifetime than the stable election protocol algorithm, modified stable election protocol algorithm, and threshold-sensitive stable election protocol algorithm for the heterogeneous wireless sensor network.


2021 ◽  
Vol 297 ◽  
pp. 01075
Author(s):  
Abdelkader Benelhouri ◽  
Hafida Idrissi-Saba ◽  
Jilali Antarir

Sensor battery limitation has always been the most challenging hurdle for wireless sensor networks. Many energy effcient routing protocols have been proposed to overcome this issue in homogeneous networks where sensor nodes start with the same initial energy. When sensor nodes have different amount of initial energy, the network is heterogeneous and it becomes complicated to design an energy effcient routing protocol to save nodes energy and prolong network lifetime. Herein, we propose a three level heterogeneous routing protocol to boost network stability period of wireless sensor networks. The network model splits up into five zones according to nodes initial energies and distance to base station. For data communication, the proposed model relies on two types of communications: Direct and Multi-Hop. The choice of the type of communication is made according to nodes initial energy and their distance to the base station. The clustering scheme is used just in the zones that contains nodes with higher energies. The simulation of our proposed scheme is done using Matlab simulator and the results are compared to the conventional heterogeneous routing protocols 3-level heterogeneous Stable Election Protocol and 3-level Modified Low Energy Adaptive Clustering Hierarchy.


Author(s):  
Muhsin J. Al-Amery ◽  
Mohammed H. Ghadban

There is no doubt that the most challenging aspect in the wireless sensor networks (WSN) is the lifetime, due to limitations in their energy. WSN depends on a specific group of sensor nodes to gather the data from other nodes and forward it to the base station (BS). These nodes are called cluster heads. Having reliable cluster head’s (CH) means longer life to the network. In this paper, a versatile calculation has been acquainted and analyzed for selecting the CH that maintains the least vitality utilization in the network with appropriate life time during every correspondence round. The altered methodology depends on the improved calendar of the time division multiple access (TDMA) plans. This methodology is created to decide the next CH based on lifetime, expended vitality, number of CH’s, and the frequent contact to the BS. A comparative analysis is introduced, the proposed algorithm assistant cluster heads (ACHS) shows energizing outcomes in vitality utilization in WSNs just as expanding the general system dependability with reasonable viability and productivity in terms of lifetime. The ACHS strategy shows a decrease in the WSN vitality utilization up to about 25% and shows an expansion in the system life time by 30% than the upgraded timetable of time TDMA plan approach.


Author(s):  
Ali Al-Qamaji ◽  
Baris Atakan

AbstractWireless sensor networks (WSNs) consist of compact deployed sensor nodes which collectively report their sensed readings about an event to the Base Station (BS). In WSNs, due to the dense deployment, sensor readings can be spatially correlated and it is nonessential to transmit all their readings to the BS. Therefore, for more energy efficient, it is vital to choose which sensor node should report their sensed readings to the BS. In this paper, the event distortion-based clustering (EDC) algorithm is proposed for the spatially correlated sensor nodes. Here, the sensor nodes are assumed to harvest energy from ambient electromagnetic radiation source. The EDC algorithm allows the energy-harvesting sensor nodes to select and eliminate nonessential nodes while maintain an acceptable level of distortion at the BS. To measure the reliability, a theoretical framework of the distortion function is first derived for both single-hop and two-hop communication scenarios. Then, based on the derived theoretical framework, the EDC algorithm is introduced. Through extensive simulations, the performance of the EDC algorithm is evaluated in terms of achievable distortion level, number of alive nodes and harvested energy levels. As a result, EDC algorithm can successfully exploit both the spatial correlation and energy harvesting to improve the energy efficiency while preserving an acceptable level of distortion. Furthermore, the performance comparisons reveal that the two-hop communication model outperforms the single-hop model in terms of the distortion and energy-efficiency.


2019 ◽  
Vol 16 (9) ◽  
pp. 3961-3964
Author(s):  
Charu Sharma ◽  
Rohit Vaid

In designing Wireless Sensor Networks, energy efficiency and security should be considered very critically. Energy efficiency is achieved through data aggregation which eliminates the transmission of redundant data while security is achieved by preserving confidentiality among sensor node and the base station. In this paper, an energy efficient and secure cluster based aggregation mechanism is presented. In this model, for energy efficiency the network is divided into tracks and sectors so the cluster head’s are uniformly selected from the whole network. To achieve security the cluster head’s perform data aggregation with the help of some pattern codes and only distinctive data is transmitted from sensor nodes in encrypted form. To perform aggregation, the sensor nodes do not need to know about the actual sensor data therefore there is no need to use any encryption or decryption schemes between nodes and cluster head. Performance evaluation shows proposed model works better to enhance the network lifetime, security, average residual energy, and average packet transmission ratio than conventional data aggregation models.


Author(s):  
Karuna Babber

Background: The advent of wireless sensor networks makes it possible to track the events even in the remotest areas that too without human intervention. But severe resource constraints, generally energy of sensor nodes push researchers worldwide to develop energy efficient protocols in order to accomplish the application objectives of these networks. Objective: However, till date there is no energy efficient routing protocol which provides uniformity with maximum resource utilization for WSNs. Methods: In this paper, a Uniform Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks (UCAEE) has been proposed. UCAEE is a base station controlled algorithm where entire sensing area is partitioned into uniform clusters. The motive of the algorithm is to split the sensing area into uniform clusters and to select cluster heads and gate-way nodes within each cluster so that the network energy can be balanced in a best possible way. Conclusion: UCAEE achieves minimum energy consumption during data transmission and reception. Results: Simulation results indicate that proposed UCAEE algorithm conserves more energy than its contemporary clustering algorithms like LEACH, PEGASIS and SECA and promises better network lifetime of wireless sensor networks.


Sign in / Sign up

Export Citation Format

Share Document