scholarly journals Fuzzy Classification with Comprehensive Learning Gravitational Search Algorithm in Breast Tumor Detection

2019 ◽  
Vol 8 (2) ◽  
pp. 2688-2694 ◽  

The research paper herewith presents an effectual diagnosis classification system using fuzzy classifier and a very efficient heuristics algorithm comprehensive learning gravitational search algorithm (CLGSA) which has a good ability to search and finding optimal solutions. The effectiveness of the proposed model is estimating on Wisconsin breast cancer data set available in the UCI Machine learning source in the University of California, Irvine. We testify the data over the parameters of classification of accurateness, sensitivity as well as specificity with a much better and more responsive 10-fold cross validation method; which is considered as a reliable diagnostics model in the medical field. Experiment results have clearly shown that the proposed approach will turn out to be a calculative and decisive medium for cancer detection in the field of medicine

Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1458 ◽  
Author(s):  
Marina Bardamova ◽  
Ilya Hodashinsky ◽  
Anton Konev ◽  
Alexander Shelupanov

The presence of imbalance in data significantly complicates the classification task, including fuzzy systems. Due to a large number of instances of bigger classes, instances of smaller classes are not recognized correctly. Therefore, additional tools for improving the quality of classification are required. The most common methods for handling imbalanced data have several disadvantages. For example, methods for generating additional instances of minority classes can worsen classification if there is a strong overlap of instances from different classes. Methods that directly modify the fuzzy classification algorithm lead to a decline in the interpretability of the model. In this paper, we study the efficiency of the gravitational search algorithm in the tasks of selecting the features and tuning the term parameters for fuzzy classifiers of imbalanced data. We consider only data with two classes and apply the algorithm based on extreme values of classes to construct models with a minimum number of rules. In addition, we propose a new quality metric based on the sum of the overall accuracy and the geometric mean with the presence of a priority coefficient between them.


2021 ◽  
Vol 5 (1) ◽  
pp. 90
Author(s):  
Miftahul Falah ◽  
Dian Palupi Rini ◽  
Iwan Pahendra

Predicting disease is usually done based on the experience and knowledge of the doctor. Diagnosis of such a disease is traditionally less effective. The development of medical diagnosis based on machine learning in terms of disease prediction provides a more accurate diagnosis than the traditional way. In terms of predicting disease can use artificial neural networks. The artificial neural network consists of various algorithms, one of which is the Backpropagation Algorithm. In this paper it is proposed that disease prediction systems use the Backpropagation algorithm. Backpropagation algorithms are often used in disease prediction, but the Backpropagation algorithm has a slight drawback that tends to take a long time in obtaining optimum accuracy values. Therefore, a combination of algorithms can overcome the shortcomings of the Backpropagation algorithm by using the success of the Gravitational Search Algorithm (GSA) algorithm, which can overcome the slow convergence and local minimum problems contained in the Backpropagation algorithm. So the authors propose to combine the Backpropagation algorithm using the Gravitational Search Algorithm (GSA) in hopes of improving accuracy results better than using only the Backpropagation algorithm. The results resulted in a higher level of accuracy with the same number of iterations than using Backpropagation only. Can be seen in the first trial of breast cancer data with parameters namely hidden layer 5, learning rate of 2 and iteration as much as 5000 resulting in accuracy of 99.3 % with error 0.7% on Backpropagation Algorithm, while in combination BP & GSA got accuracy of 99.68 % with error of 0.32%.


Author(s):  
Dongdong Kong ◽  
Yongjie Chen ◽  
Ning Li

Monitoring tool wear has drawn much attention recently since tool failure will make it hard to guarantee the surface integrity of workpieces and the stability of manufacturing process. In this paper, the integrated approach that combines wavelet package decomposition, least square support vector machine, and the gravitational search algorithm is proposed for monitoring the tool wear in turning process. Firstly, the wavelet package decomposition is utilized to decompose the original cutting force signals into multiple sub-bands. Root mean square of the wavelet packet coefficients in each sub-band are extracted as the monitoring features. Then, the gravitational search algorithm–least square support vector machine model is constructed by using the extracted wavelet–domain features so as to identify the tool wear states. Eight sets of cutting experiments are conducted to prove the superiority of the proposed integrated approach. The experimental results show that the wavelet–domain features can help to ameliorate the performance of the gravitational search algorithm–least square support vector machine model. Besides, gravitational search algorithm–least square support vector machine performs better than gravitational search algorithm–support vector machine in prediction accuracy of tool wear states even in the case of small-sized training data set and the time consumption of parameters optimization in gravitational search algorithm–least square support vector machine is less than that of gravitational search algorithm–support vector machine under large-sized training data set. What's more, the gravitational search algorithm–least square support vector machine model outperforms some other related methods for tool wear estimation, such as k-NN, feedforward neural network, classification and regression tree, and linear discriminant analysis.


2016 ◽  
Vol 3 (4) ◽  
pp. 1-11
Author(s):  
M. Lakshmikantha Reddy ◽  
◽  
M. Ramprasad Reddy ◽  
V.C. Veera Reddy ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document