scholarly journals Iot and Big Data Framework for Paddy Cultivation

2019 ◽  
Vol 8 (2) ◽  
pp. 6341-6348

Agriculture needs agriculturists to adopt digital in terms of low cost data acquisition from Soil, Weather and water related resources through drones, satellites, sensors and weather stations where in data sources are different, unstructured, volume and veracity of data generated is also huge which poses as a big data problem to solved. Agriculture is the backbone of India and being the largest paddy producer in the world. TamilNadu alone contributes at 7% of the overall paddy cultivation. The key aspect of TamilNadu paddy cultivation is 90% of its farmers belong to the small and medium size category. It's important for farmers who are producing paddy to be equipped with the technology advancements in a simple and effective manner to manage better way of irrigation in terms of water management, improving yield and efficient use of fertilizer and pesticides. Due to inherent nature of large area involved and complex eco system involved paddy cultivation have been always posing challenges in new technology adoption in terms of data acquisition, processing and reporting and lacks easy to follow contextual framework technologists to adopt. This paper would discuss on the infrastructure, technology and big data aspects for paddy cultivation by qualitative research methods. The research would involve identification of the appropriate contextual framework through architectural means and algorithm which would help in sensor deployment strategy. At the end the paper would develop a framework for approaching the IoT and Big Data in paddy cultivation. The framework would outline the architecture components, protocols, communication interfaces which could be leveraged for paddy cultivation. Apart from this the framework also discusses the Wireless sensor network deployment and its key aspect such as coverage in the paddy fields

Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 157
Author(s):  
Rahmat Ullah ◽  
Tughrul Arslan

Microwave imaging systems are currently being investigated for breast cancer, brain stroke and neurodegenerative disease detection due to their low cost, portable and wearable nature. At present, commonly used radar-based algorithms for microwave imaging are based on the delay and sum algorithm. These algorithms use ultra-wideband signals to reconstruct a 2D image of the targeted object or region. Delay multiply and sum is an extended version of the delay and sum algorithm. However, it is computationally expensive and time-consuming. In this paper, the delay multiply and sum algorithm is parallelised using a big data framework. The algorithm uses the Spark MapReduce programming model to improve its efficiency. The most computational part of the algorithm is pixel value calculation, where signals need to be multiplied in pairs and summed. The proposed algorithm broadcasts the input data and executes it in parallel in a distributed manner. The Spark-based parallel algorithm is compared with sequential and Python multiprocessing library implementation. The experimental results on both a standalone machine and a high-performance cluster show that Spark significantly accelerates the image reconstruction process without affecting its accuracy.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


2006 ◽  
Vol 90 (20) ◽  
pp. 3557-3567 ◽  
Author(s):  
U. Gangopadhyay ◽  
K.H. Kim ◽  
S.K. Dhungel ◽  
U. Manna ◽  
P.K. Basu ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 226380-226396
Author(s):  
Diana Martinez-Mosquera ◽  
Rosa Navarrete ◽  
Sergio Lujan-Mora

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2459
Author(s):  
Rubén Tena Sánchez ◽  
Fernando Rodríguez Varela ◽  
Lars J. Foged ◽  
Manuel Sierra Castañer

Phase reconstruction is in general a non-trivial problem when it comes to devices where the reference is not accessible. A non-convex iterative optimization algorithm is proposed in this paper in order to reconstruct the phase in reference-less spherical multiprobe measurement systems based on a rotating arch of probes. The algorithm is based on the reconstruction of the phases of self-transmitting devices in multiprobe systems by taking advantage of the on-axis top probe of the arch. One of the limitations of the top probe solution is that when rotating the measurement system arch, the relative phase between probes is lost. This paper proposes a solution to this problem by developing an optimization iterative algorithm that uses partial knowledge of relative phase between probes. The iterative algorithm is based on linear combinations of signals when the relative phase is known. Phase substitution and modal filtering are implemented in order to avoid local minima and make the algorithm converge. Several noise-free examples are presented and the results of the iterative algorithm analyzed. The number of linear combinations used is far below the square of the degrees of freedom of the non-linear problem, which is compensated by a proper initial guess. With respect to noisy measurements, the top probe method will introduce uncertainties for different azimuth and elevation positions of the arch. This is modelled by considering the real noise model of a low-cost receiver and the results demonstrate the good accuracy of the method. Numerical results on antenna measurements are also presented. Due to the numerical complexity of the algorithm, it is limited to electrically small- or medium-size problems.


2021 ◽  
Vol 13 (15) ◽  
pp. 8244
Author(s):  
Francesca Cirisano ◽  
Michele Ferrari

Highly hydrophobic and superhydrophobic materials obtained from recycled polymers represent an interesting challenge to recycle and reuse advanced performance materials after their first life. In this article, we present a simple and low-cost method to fabricate a superhydrophobic surface by employing polytetrafluoroethylene (PTFE) powder in polystyrene (PS) dispersion. With respect to the literature, the superhydrophobic surface (SHS) was prepared by utilizing a spray- coating technique at room temperature, a glass substrate without any further modification or thermal treatment, and which can be applied onto a large area and on to any type of material with some degree of fine control over the wettability properties. The prepared surface showed superhydrophobic behavior with a water contact angle (CA) of 170°; furthermore, the coating was characterized with different techniques, such as a 3D confocal profilometer, to measure the average roughness of the coating, and scanning electron microscopy (SEM) to characterize the surface morphology. In addition, the durability of SH coating was investigated by a long-water impact test (raining test), thermal treatment at high temperature, an abrasion test, and in acidic and alkaline environments. The present study may suggest an easy and scalable method to produce SHS PS/PTFE films that may find implementation in various fields.


Author(s):  
Cheyma BARKA ◽  
Hanen MESSAOUDI-ABID ◽  
Houda BEN ATTIA SETTHOM ◽  
Afef BENNANI-BEN ABDELGHANI ◽  
Ilhem SLAMA-BELKHODJA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document