scholarly journals Telugu Word Image Retrieval using Deep learning Convolutional Neural Networks

2019 ◽  
Vol 8 (2) ◽  
pp. 5860-5865

Telugu word image retrieval (TWIR) is a still challenging task due to the structure complexity of Telugu word image. An efficient TWIR system can be implemented by a holistic representation of word image that comprises of every possible extracted feature. Further, it is also required to retrieve more relevant word images even there is a noisy query word image. Here, it is proposed an efficient TWIR system that utilizes deep learning convolutional neural networks (DL-CNN) to extract the feature map from the query and database word images. In addition, principal component analysis (PCA) is employed to compute the principal features form the feature map and pairwise hamming distance is considered as a similarity metric to retrieve most relevant Telugu word images from the database. Extensive simulation analysis disclosed that proposed TIWR system obtained a superior performance over conventional TIWR systems in terms of mean average precision (mAP) and mean average recall (mAR).

2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


2021 ◽  
Vol 11 (5) ◽  
pp. 2284
Author(s):  
Asma Maqsood ◽  
Muhammad Shahid Farid ◽  
Muhammad Hassan Khan ◽  
Marcin Grzegorzek

Malaria is a disease activated by a type of microscopic parasite transmitted from infected female mosquito bites to humans. Malaria is a fatal disease that is endemic in many regions of the world. Quick diagnosis of this disease will be very valuable for patients, as traditional methods require tedious work for its detection. Recently, some automated methods have been proposed that exploit hand-crafted feature extraction techniques however, their accuracies are not reliable. Deep learning approaches modernize the world with their superior performance. Convolutional Neural Networks (CNN) are vastly scalable for image classification tasks that extract features through hidden layers of the model without any handcrafting. The detection of malaria-infected red blood cells from segmented microscopic blood images using convolutional neural networks can assist in quick diagnosis, and this will be useful for regions with fewer healthcare experts. The contributions of this paper are two-fold. First, we evaluate the performance of different existing deep learning models for efficient malaria detection. Second, we propose a customized CNN model that outperforms all observed deep learning models. It exploits the bilateral filtering and image augmentation techniques for highlighting features of red blood cells before training the model. Due to image augmentation techniques, the customized CNN model is generalized and avoids over-fitting. All experimental evaluations are performed on the benchmark NIH Malaria Dataset, and the results reveal that the proposed algorithm is 96.82% accurate in detecting malaria from the microscopic blood smears.


2021 ◽  
Vol 42 (1) ◽  
pp. e90289
Author(s):  
Carlos Eduardo Belman López

Given that it is fundamental to detect positive COVID-19 cases and treat affected patients quickly to mitigate the impact of the virus, X-ray images have been subjected to research regarding COVID-19, together with deep learning models, eliminating disadvantages such as the scarcity of RT-PCR test kits, their elevated costs, and the long wait for results. The contribution of this paper is to present new models for detecting COVID-19 and other cases of pneumonia using chest X-ray images and convolutional neural networks, thus providing accurate diagnostics in binary and 4-classes classification scenarios. Classification accuracy was improved, and overfitting was prevented by following 2 actions: (1) increasing the data set size while the classification scenarios were balanced; and (2) adding regularization techniques and performing hyperparameter optimization. Additionally, the network capacity and size in the models were reduced as much as possible, making the final models a perfect option to be deployed locally on devices with limited capacities and without the need for Internet access. The impact of key hyperparameters was tested using modern deep learning packages. The final models obtained a classification accuracy of 99,17 and 94,03% for the binary and categorical scenarios, respectively, achieving superior performance compared to other studies in the literature, and requiring a significantly lower number of parameters. The models can also be placed on a digital platform to provide instantaneous diagnostics and surpass the shortage of experts and radiologists.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1139
Author(s):  
Khadija Kanwal ◽  
Khawaja Tehseen Ahmad ◽  
Rashid Khan ◽  
Naji Alhusaini ◽  
Li Jing

Convolutional neural networks (CNN) are relational with grid-structures and spatial dependencies for two-dimensional images to exploit location adjacencies, color values, and hidden patterns. Convolutional neural networks use sparse connections at high-level sensitivity with layered connection complying indiscriminative disciplines with local spatial mapping footprints. This fact varies with architectural dependencies, insight inputs, number and types of layers and its fusion with derived signatures. This research focuses this gap by incorporating GoogLeNet, VGG-19, and ResNet-50 architectures with maximum response based Eigenvalues textured and convolutional Laplacian scaled object features with mapped colored channels to obtain the highest image retrieval rates over millions of images from versatile semantic groups and benchmarks. Time and computation efficient formulation of the presented model is a step forward in deep learning fusion and smart signature capsulation for innovative descriptor creation. Remarkable results on challenging benchmarks are presented with a thorough contextualization to provide insight CNN effects with anchor bindings. The presented method is tested on well-known datasets including ALOT (250), Corel-1000, Cifar-10, Corel-10000, Cifar-100, Oxford Buildings, FTVL Tropical Fruits, 17-Flowers, Fashion (15), Caltech-256, and reported outstanding performance. The presented work is compared with state-of-the-art methods and experimented over tiny, large, complex, overlay, texture, color, object, shape, mimicked, plain and occupied background, multiple objected foreground images, and marked significant accuracies.


Image is an important medium for monitoring the treatment responses of patient’s diseases by the physicians. There could be a tough task to organize and retrieve images in structured manner with respect to incredible increase of images in Hospitals. Text based image retrieval may prone to human error and may have large deviation across different images. Content-Based Medical Image Retrieval(CBMIR) system plays a major role to retrieve the required images from the huge database.Recent advances in Deep Learning (DL) have made greater achievements for solving complex problems in computer vision ,graphics and image processing. The deep architecture of Convolutional Neural Networks (CNN) can combine the low-level features into high-level features which could learn the semantic representation from images. Deep learning can help to extract, select and classify image features, measure the predictive target and gives prediction models to assist physician efficiently. The motivation of this paper is to provide the analysis of medical image retrieval system using CNN algorithm.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1265 ◽  
Author(s):  
Haya Alaskar ◽  
Abir Hussain ◽  
Nourah Al-Aseem ◽  
Panos Liatsis ◽  
Dhiya Al-Jumeily

Detection of abnormalities in wireless capsule endoscopy (WCE) images is a challenging task. Typically, these images suffer from low contrast, complex background, variations in lesion shape and color, which affect the accuracy of their segmentation and subsequent classification. This research proposes an automated system for detection and classification of ulcers in WCE images, based on state-of-the-art deep learning networks. Deep learning techniques, and in particular, convolutional neural networks (CNNs), have recently become popular in the analysis and recognition of medical images. The medical image datasets used in this study were obtained from WCE video frames. In this work, two milestone CNN architectures, namely the AlexNet and the GoogLeNet are extensively evaluated in object classification into ulcer or non-ulcer. Furthermore, we examine and analyze the images identified as containing ulcer objects to evaluate the efficiency of the utilized CNNs. Extensive experiments show that CNNs deliver superior performance, surpassing traditional machine learning methods by large margins, which supports their effectiveness as automated diagnosis tools.


2021 ◽  
Vol 12 (3) ◽  
pp. 46-47
Author(s):  
Nikita Saxena

Space-borne satellite radiometers measure Sea Surface Temperature (SST), which is pivotal to studies of air-sea interactions and ocean features. Under clear sky conditions, high resolution measurements are obtainable. But under cloudy conditions, data analysis is constrained to the available low resolution measurements. We assess the efficiency of Deep Learning (DL) architectures, particularly Convolutional Neural Networks (CNN) to downscale oceanographic data from low spatial resolution (SR) to high SR. With a focus on SST Fields of Bay of Bengal, this study proves that Very Deep Super Resolution CNN can successfully reconstruct SST observations from 15 km SR to 5km SR, and 5km SR to 1km SR. This outcome calls attention to the significance of DL models explicitly trained for the reconstruction of high SR SST fields by using low SR data. Inference on DL models can act as a substitute to the existing computationally expensive downscaling technique: Dynamical Downsampling. The complete code is available on this Github Repository.


Sign in / Sign up

Export Citation Format

Share Document