scholarly journals Model Dispersion Analysis of Circular Waveguide in Normal and Reverse Boundary Condition

The dispersion characteristics of the circular step index fiber with helical windings between the core-cladding region is investigated. Sheath helix is wounded between the core and cladding using two directions, namely in the clock wise and anticlockwise direction. Substituting the field components into the modified boundary conditions due to the addition of the helical windings the modal characteristics are derived for both fibers. Representations of the helical windings are done by using normal boundary conditions and reverse boundary conditions. The Eigen equation is obtained in the form of Bessel functions and modified Bessel functions for both the waveguides. The dispersion curves are plotted for two specific pitch angles ψ=0° and ψ=90 for each fiber and the results are compared. The direction of wrapping the helical material results in a change in the dispersion properties with regards to the way the modes propagate in both fibers. These changes are seen by the presents and absence of (1) band gap,(2) splitting of modes and (3) adjacent modes depending on the direction and pitch angle of the helical windings. Results obtained in this work suggest that direction and pitch angle of the helical winding are parameters that are able to control the behavior of the modes.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
N. Iqbal ◽  
M. A. Baqir ◽  
P. K. Choudhury

The paper deals with the sustainment of electromagnetic waves in circularly cylindrical optical guide with chiral nihility and chiral materials in the core and the clad sections, respectively. A perfectly conducting tightly wound helix is introduced at the core-clad interface. The eigenvalue relation for such a complex optical microstructured guide is deduced by applying suitable boundary conditions at the core-clad interface, and the dispersion behavior is analyzed by varying the pitch angle of helix. The sustainment of energy flux density in such optical guides is estimated under various structural conditions, and the density patterns in core-clad sections are anatomized analytically.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
M. A. Baqir ◽  
P. K. Choudhury

The paper deals with the study of flux density through a newly proposed twisted clad guide containing DB medium. The inner core and the outer clad sections are usual dielectrics, and the introduced twisted windings at the core-clad interface are treated under DB boundary conditions. The pitch angle of twist is supposed to greatly contribute towards the control over the dispersion characteristics of the guide. The eigenvalue equation for the guiding structure is deduced, and the analytical investigations are made to explore the propagation patterns of flux densities corresponding to the sustained low-order hybrid modes under the situation of varying pitch angles. The emphasis has been put on the effects due to the DB twisted pitch on the propagation of energy flux density through the guide.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


2021 ◽  
pp. 12-19
Author(s):  
Костянтин Петрович Барахов

The purpose of this work is to create a mathematical model of the stress state of overlapped circular axisymmetric adhesive joints and to build an appropriate analytical solution to the problem. To solve the problem, a simplified model of the adhesive bond of two overlapped plates is proposed. The simplification is that the movement of the layers depends only on the radial coordinate and does not depend on the angular one. The model is a generalization of the classical model of the connection of Holland and Reissner in the case of axial symmetry. The stresses are considered to be evenly distributed over the thickness of the layers, and the adhesive layer works only on the shift. These simplifications allowed us to obtain an analytical solution to the studied problem. The problem of the stress state of the adhesive bond of two plates is solved, one of which is weakened by a round hole, and the other is a round plate concentric with the hole. A load is applied to the plate weakened by a round hole. The discussed area is divided into three parts: the area of bonding, as well as areas inside and outside the bonding. In the field of bonding, the problem is reduced to third- and fourth-order differential equations concerning tangent and normal stresses, respectively, the solutions of which are constructed as linear combinations of Bessel functions of the first and second genera and modified Bessel functions of the first and second genera. Using the found tangential and normal stresses, we obtain linear inhomogeneous Euler differential equations concerning longitudinal and transverse displacements. The solution of the obtained equations is also constructed using Bessel functions. Outside the area of bonding, displacements are described by the equations of bending of round plates in the absence of shear forces. Boundary conditions are met exactly. The satisfaction of marginal conditions, as well as boundary conditions, leads to a system of linear equations concerning the unknown coefficients of the obtained solutions. The model problem is solved and the numerical results are compared with the results of calculations performed by using the finite element method. It is shown that the proposed model has sufficient accuracy for engineering problems and can be used to solve problems of the design of aerospace structures.


2020 ◽  
Vol 20 (11) ◽  
pp. 2050113
Author(s):  
A. Hosseinkhani ◽  
D. Younesian ◽  
M. Ranjbar

In this paper, we study vibro-acoustic behavior of auxetic sandwich panels subjected to different excitations and boundary conditions. The core of this panel has the auxetic feature (with negative Poisson’s ratio or NPR) with anti-tetrachiral honeycomb structure. Mechanical behavior of the core is formulated using theoretical relations presented for this kind of auxetic. Using the Finite Element Method, the modal analysis and spectral analysis of the structure are accomplished. Different random colored noises are applied as the system excitation. First, a parametric study is performed; and some interesting results are observed from investigating the effects of geometric parameters, boundary conditions, and noise color on the vibro-acoustic behavior of the structure. These parameters affect the natural frequencies, level of radiated sound, and mass of the structure. An optimization algorithm is applied to the geometrical parameters in order to simultaneously reduce the level of radiated sound and preserve the amount of total mass. By the use of the Genetic Algorithm (GA), we could achieve a remarkable noise attenuation gain. It is shown that the GA choses different optimized parameters for the structure according to the location of the load and frequency content of the load spectrum.


2012 ◽  
Vol 40 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Muhammad Haseeb Hassan ◽  
Muhammad Junaid Mughal ◽  
Muhammad Mahmood Ali ◽  
Qaiser Abbas Naqvi

Sign in / Sign up

Export Citation Format

Share Document