scholarly journals Estimation of Rate Constants for Nutrient Transformations

2019 ◽  
Vol 8 (3) ◽  
pp. 2437-2441

Non-point source pollution of surface water is a major impediment to meet water quality objectives. Managing such pollution sources in a sustainable way is a key success factor in maintaining high water quality and to prevent eutrophication. Mathematical models are widely used to simulate ecological and water quality interactions in surface waters. Simulation errors may arise due to uncertainties of the structure, input data and the model parameters. In this study, an attempt has been made to estimate the rate constants for nutrient transformations in Kabini River located in Southern part of Karnataka state in India. The experimental results demonstrated both ammonia and nitrite oxidation. In the river water, DO concentration was 5.2 mg/L. After addition of pollutants it reduced to 3.9 mg/L. EC changed from 370 to 550 µS/cm. pH remained almost the same. At 320C, the rate constants for phosphate, nitrate, nitrite, potassium and ammonia were found to be 0.165, 0.21, 0.077, 0.0777 and 0.078/hr respectively. The results obtained clearly specify that the rate constants are concentration and temperature dependent.

Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1387
Author(s):  
Xuekai Chen ◽  
Guojian He ◽  
Xiaobo Liu ◽  
Bogen Li ◽  
Wenqi Peng ◽  
...  

The prevention and control of non-point source pollution is an important link in managing basin water quality and is an important factor governing the environmental protection of watershed water in China over the next few decades. The control of non-point source pollution relies on the recognition of the amount, location, and influencing factors. The watershed nonpoint source pollution mechanism model is an effective method to address the issue. However, due to the complexity and randomness of non-point source pollution, both the development and application of the watershed water environment model have always focused on the accuracy and rationality of model parameters. In this pursuit, the present study envisaged the temporal and spatial heterogeneity of non-point source pollution caused by the complex underlying surface conditions of the watershed, and the insufficient coverage of hydrological and water quality monitoring stations. A refined watershed non-point source pollution simulation method, combining the Monte Carlo analytic hierarchy process (MCAHP) and the sub-watershed parameter transplantation method (SWPT), was established on the basis of the migration and transformation theory of the non-point source pollution, considering the index selection, watershed division, sub-watershed simulation, and parameter migration. Taking the Erhai Lake, a typical plateau lake in China, as the representative research object, the MCAHP method effectively reduced the uncertainty of the weights of the watershed division indexes compared to the traditional AHP method. Furthermore, compared to the traditional all watershed parameter simulation (AWPS) approach, the simulation accuracy was improved by 40% using the SWPT method, which is important for the prevention and control of non-point source pollution in large-scale watersheds with significant differences in climatic and topographic conditions. Based on the simulation results, the key factors affecting the load of the non-point source pollution in the Erhai watershed were identified. The results showed that the agricultural land in Erhai Lake contributed a majority of the load for several reasons, including the application of nitro phosphor complex fertilizer. Among the different soil types, paddy soil was responsible for the largest pollution load of total nitrogen and total phosphorus discharge into the lake. The zones with slopes of 0°‒18° were found to be the appropriate area for farming. Our study presents technical methods for the assessment, prevention, and control of non-point source pollution load in complex watersheds.


1990 ◽  
Vol 22 (5) ◽  
pp. 137-144 ◽  
Author(s):  
M. T. Dokulil ◽  
G. A. Janauer

The system “Neue Donau” functions as a control system for high waters of the river Danube and is an important recreational area for many people. Water quality and trophic status of the water body is thereforeof prime importance. The high nutrient concentrations of the river Danube (P-tot 238±41µg/l, N-tot 2.53±0.78 mg/l) reach the system via groundwater seepage. Present conditions in the basin of Neue Donau are,as a result of this nutrient in-flux,eutrophic to hypertrophic. Average values during the summer period have declined from 366 µg/l total phosphorus to 78 µg/l, and from 86 µg/l chlorophyll-a tol7µg/l between the years 1985 and 1988. However, a dam which is planned in the river at Vienna will permanently raise the water level of the river thus increasing the the groundwater flow in the direction to the Neue Donau and therefore the nutrient input which will enhance trophic conditions in the impoundment. Since macrophytes play an important role in one part of the system macrophyte management together with measures along the river are some of the suggested strategies to keep the system Neue Donau at acceptable trophic conditions and good water quality.


1998 ◽  
Vol 37 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Hany Hassan ◽  
Keisuke Hanaki ◽  
Tomonori Matsuo

Global climate change induced by increased concentrations of greenhouse gases (especially CO2) is expected to include changes in precipitation, wind speed, incoming solar radiation, and air temperature. These major climate variables directly influence water quality in lakes by altering changes in flow and water temperature balance. High concentration of nutrient enrichment and expected variability of climate can lead to periodic phytoplankton blooms and an alteration of the neutral trophic balance. As a result, dissolved oxygen levels, with low concentrations, can fluctuate widely and algal productivity may reach critical levels. In this work, we will present: 1) recent results of GCMs climate scenarios downscaling project that was held at the University of Derby, UK.; 2) current/future comparative results of a new mathematical lake eutrophication model (LEM) in which output of phytoplankton growth rate and dissolved oxygen will be presented for Suwa lake in Japan as a case study. The model parameters were calibrated for the period of 1973–1983 and validated for the period of 1983–1993. Meterologic, hydrologic, and lake water quality data of 1990 were selected for the assessment analysis. Statistical relationships between seven daily meteorological time series and three airflow indices were used as a means for downscaling daily outputs of Hadley Centre Climate Model (HadCM2SUL) to the station sub-grid scale.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1393
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a general temperature-dependent stress–strain constitutive model for polymer-bonded composite materials, allowing for the prediction of deformation behaviors under tension and compression in the testing temperature range. Laboratory testing of the material specimens in uniaxial tension and compression at multiple temperatures ranging from −40 ∘C to 75 ∘C is performed. The testing data reveal that the stress–strain response can be divided into two general regimes, namely, a short elastic part followed by the plastic part; therefore, the Ramberg–Osgood relationship is proposed to build the stress–strain constitutive model at a single temperature. By correlating the model parameters with the corresponding temperature using a response surface, a general temperature-dependent stress–strain constitutive model is established. The effectiveness and accuracy of the proposed model are validated using several independent sets of testing data and third-party data. The performance of the proposed model is compared with an existing reference model. The validation and comparison results show that the proposed model has a lower number of parameters and yields smaller relative errors. The proposed constitutive model is further implemented as a user material routine in a finite element package. A simple structural example using the developed user material is presented and its accuracy is verified.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1955
Author(s):  
Mingxi Zhang ◽  
Guangzhi Rong ◽  
Aru Han ◽  
Dao Riao ◽  
Xingpeng Liu ◽  
...  

Land use change is an important driving force factor affecting the river water environment and directly affecting water quality. To analyze the impact of land use change on water quality change, this study first analyzed the land use change index of the study area. Then, the study area was divided into three subzones based on surface runoff. The relationship between the characteristics of land use change and the water quality grade was obtained by grey correlation analysis. The results showed that the land use types changed significantly in the study area since 2000, and water body and forest land were the two land types with the most significant changes. The transfer rate is cultivated field > forest land > construction land > grassland > unused land > water body. The entropy value of land use information is represented as Area I > Area III > Area II. The shift range of gravity center is forest land > grassland > water body > unused land > construction land > cultivated field. There is a strong correlation between land use change index and water quality, which can be improved and managed by changing the land use type. It is necessary to establish ecological protection areas or functional areas in Area I, artificial lawns or plantations shall be built in the river around the water body to intercept pollutants from non-point source pollution in Area II, and scientific and rational farming in the lower reaches of rivers can reduce non-point source pollution caused by farming.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fan Yang ◽  
Abdullah Al Mahmud ◽  
Tao Wang

Abstract Background The demand for home healthcare devices arises; however, many home healthcare devices on the market are not designed to reflect the needs and features of the end-users. This study explored the user knowledge factors that hindered the design of new home healthcare devices and the interrelationships between the factors. Methods The abovementioned factors were identified from analysing the project documents of thirty-eight carefully selected home healthcare devices produced by five manufacturers; followed by interviewing the thirty stakeholders playing key roles in developing the devices. Results The design of the home healthcare devices was influenced by (1) the user insights utilised in formulating project strategies; (2) the sources of user information; (3) the execution of user research; and (4) the formulation of the manufacturers’ principal innovation processes. Conclusions The users’ characteristics and needs were not sufficiently reflected in developing new home healthcare devices. One root cause was that the end-users were not perceived by the manufacturers as a key success factor in most cases, given that most of the devices were initiated following the public sector’s requests. Actual or potential applications of this study include the facilitation of the appropriate application of human factors methods in developing new home healthcare devices and the improvement of the user performance of the end-devices.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Fethi Medjani ◽  
Mohamed Djidel ◽  
Sofiane Labar ◽  
Louiza Bouchagoura ◽  
Chouaib Rezzag Bara

AbstractShallow aquifers are vulnerable to natural geogenic processes as well as anthropogenic influences, and this is especially apparent in desert regions. Within arid and hyperarid climates, evaporation is a controlling hydrologic process leads to an important increase in the concentration of dissolved minerals of both surface water and groundwater. In groundwater, this increase is not only dependent on shallow water table depth, but also on the hydraulic properties of sediments present within the unsaturated zone of the aquifer itself. The main objective of this research is to investigate possible mechanisms that might influence water quality changes under seasonal conditions in shallow aquifers situated within the Saharan desert region of Algeria. In this work, we focus on observed changes in hydrogeochemical characteristics, and the possible responsible processes. Under arid conditions, high water mineralization results in hypersaline water or brine solution formation within shallow aquifers. Due to active physico-chemical mechanisms such as Na+/Ca2+ ion exchange, the successive precipitation of calcite, gypsum, mirabilite or blœdite and halite is induced. Biological processes were also observed as prevalent; evidenced by large measured variations in CO2 load concentrations. These processes contributed to an inverse relationship between CO2 and O2 concentrations within the shallow aquifers studied.


Sign in / Sign up

Export Citation Format

Share Document