scholarly journals Hybrid Energy Scheduling in a Renewable Micro Grid

In the present days, the society has been facing a lot of challenges in the energy scenario, as their dependency increases in that crisis that is to be given greater concern. As fossil fuels are turned out to be too expensive or it may be phased out, in spite of large investments, researchers suggest the renewable energy sources as a supplement for this issue. A microgrid which connects the generation units with the electrical power network and also the utility area results in the efficient utilization. The efficiency and flexibility of the power system can be optimized by installing microgrid. It combines the sources of heat and power (CHP) with renewable energy which includes wind and photovoltaic power that implies a reliable and controllable power supply. As power storage equipment’s and electric vehicles (EV) enhances the bidirectional power flow, the optimization of scheduling is needed for the EV and demand side management (DSM).In this work, with the CHP microgrid, an optimal scheduling model of the network is proposed with EV and DSM.The minimum operation cost is considered as an objective function and the optimization variable is the output of each source. A simulation study which improves the capability global search using hybrid Artificial Immune algorithm is put forward for higher feasibility.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4270
Author(s):  
Gianpiero Colangelo ◽  
Gianluigi Spirto ◽  
Marco Milanese ◽  
Arturo de Risi

In the last years, a change in the power generation paradigm has been promoted by the increasing use of renewable energy sources combined with the need to reduce CO2 emissions. Small and distributed power generators are preferred to the classical centralized and sizeable ones. Accordingly, this fact led to a new way to think and design distributions grids. One of the challenges is to handle bidirectional power flow at the distribution substations transformer from and to the national transportation grid. The aim of this paper is to review and analyze the different mathematical methods to design the architecture of a distribution grid and the state of the art of the technologies used to produce and eventually store or convert, in different energy carriers, electricity produced by renewable energy sources, coping with the aleatory of these sources.


Author(s):  
Archana Sudhakar Talhar ◽  
Sanjay B. Bodkhe

This paper gives a review of energy scenario in India and other countries. Today’s demand of the world is to minimize greenhouse gas emissions, during the production of electricity. Henceforth over the world, the production of electrical power is changing by introducing abundantly available renewable energy sources like sun and wind. But, because of the intermittent nature of sustainable power sources, the electrical power network faces many problems, during the transmission and distribution of electricity. For resolving these issues, Electrical Energy Storage (EES) is acknowledged as supporting technology. This paper discusses about the world electrical energy scenario with top renowned developed countries in power generation and consumption. Contribution of traditional power sources changed after the introduction of renewable energy sources like sun and wind. Worldwide Agencies are formed like International Energy Agency (IEA), The Central Intelligence Agency, (CIS) etc. The main aim of these agencies is to provide reliable, affordable and clean energy. This paper will discuss about the regulatory authority and government policies/incentives taken by different countries.  At the end of this paper, author focuses on obstacles in implementation, development and benefits of renewable energy.


2013 ◽  
Vol 768 ◽  
pp. 3-8 ◽  
Author(s):  
M. Venmathi ◽  
R. Ramaprabha

This paper presents the comparative dynamic analysis of full bridge and half bridge three port dc-dc converter topology interfacing the renewable energy sources along with the energy storage devices. The three port converter comprises the active bridge circuit and the three winding transformer. It uses single power conversion stage with high frequency link to control power flow between the batteries, load and the renewable energy sources. The power flow between the ports is controlled by phase shifting the square wave outputs of the active bridges in combination with pulse width modulation (PWM) technique. The analysis reveals that the battery discharges when the source is not sufficient to supply the load and it was charged when the source alone is capable of supplying the load. Hence there is a bidirectional power flow in the storage port when there is a transition in the source.


2021 ◽  
Vol 8 ◽  
Author(s):  
E. K. Hussain ◽  
Philipp R. Thies ◽  
Jon Hardwick ◽  
Peter M. Connor ◽  
Mohammad Abusara

This paper presents a methodology for the reliability and power flow analysis of islands or off-grid power networks for situations of scarce data and information. It offers a new and pragmatic approach to derive the required power network information, including the power cable parameters and the load at each power node. The paper aims to present the developed methodology, and to illustrate its application, using Ushant Island as a case study. The assessment of the current power network status and the reliability analysis are presented. Grid performance parameters are further compared for conventional diesel generator operation and renewable energy generation scenarios, demonstrating the advantages of replacing the existing diesel units with renewable energy sources in terms of system reliability. The analysis shows that by introducing renewable energy systems to the island’s grid, the reliability of the grid increases by up to 50% and cable capacity usage reduces by up to 30%. Furthermore, this work suggests that it would not be necessary to modify the grid cables when substituting the diesel generator. The paper will be of interest to network planners, community stakeholders, project developers and decision-makers concerned with renewable energy investment on islands and in remote rural areas.


2020 ◽  
Vol 39 (1) ◽  
pp. 228-237
Author(s):  
I.B. Anichebe ◽  
A.O. Ekwue

Frequent blackouts and unstable supply of electricity show that the  voltage instability problem has been one of the major challenges facing the power system network in Nigeria. This study investigates the voltage stability analysis of the Nigerian power network in the presence of renewable energy sources; FACTS device is used as a voltage controller. A 330kV, 28-bus power system network was studied using the PSS/E software-based Newton-Raphson load-flow technique. The results show that 10 out of the 28 buses had voltages lying below the statutory limit of 0.95 ≤ 1.05 p.u. The application of STATCOM and DFIG devices on two of the weakest buses restored the voltages to acceptable statutory limits. The total active and reactive power losses were reduced to 18.76% and 18.82% respectively. Keywords: Voltage stability analysis; Integration of renewable energy sources; FACTS controllers, Reactive Power, Power Flow.


Towards the end of the previous century, the humanity understood very clearly two facts – first, the World supplies of fossil fuels (coal, oil, gas, uranium) are limited, and, second, industrial development and classical generation of electrical energy seriously endanger the environment. Renewable energy sources (sun energy, wind energy, bio fuels, etc.) are based on the use of natural fluxes of energy (Masters,2004). That is why they are considered to be inexhaustible. In specific cases of implementations, for example in lighting, a direct generation of electrical energy using photovoltaics is outlined as a long-term one.


2020 ◽  
pp. 43-54
Author(s):  
Helena M. Ramos ◽  
◽  
Mariana Simão

A elevada intermitência das fontes de energia renováveis condiciona a produção de energia elétrica, que continua a depender muito dos combustíveis fósseis. Uma vez que existe complementaridade por parte das fontes de energia renováveis, a sua integração conjunta é, sem dúvida, a melhor solução para reduzir esta dependência. Aliado a este facto, poderá coexistir um sistema de armazenamento por bombagem, capaz de gerar reservas hídricas, que serão aproveitadas quando a procura exceder a oferta energética. Procedeu-se ao desenvolvimento de dois modelos: um sobre custos de turbomáquinas e outro que visa o estudo do potencial de recuperação de energia de uma solução energética híbrida com armazenamento por bombagem combinado com fonte de energia eólica. Foram estudadas diferentes combinações para estas duas fontes de energia renovável, analisando o consumo satisfeito e a energia eólica não consumida, tendo-se concluído que o excedente de energia eólica pode ser aproveitado para bombagem. The high intermittence of renewable energy sources determines the production of electricity, which remains highly dependent on fossil fuels. Since there is complementarity between renewable energy sources, their joint integration is a potential solution to reduce this dependency. Consequentially, a pumping storage system capable of generating water reserves can coexist, which will be used when demand exceeds the energy supply. Two models were developed: one based on turbomachinery costs and the other based on the potential of energy recovery of a hybrid energy solution with pump storage combined with wind energy. Different combinations were studied for these two sources, analysing the satisfied consumption and the wind energy that is not consumed, in which it was concluded that the surplus of wind energy can be used by pumped storage.


2019 ◽  
Vol 8 (1) ◽  
pp. 13-30 ◽  
Author(s):  
C. Mekontso ◽  
Abdulkarim Abubakar ◽  
S. Madugu ◽  
O. Ibrahim ◽  
Y. A. Adediran

The growing evidence of the global warning phenomena and the rapid depletion of fossil fuels have drawn the world attention to the exploitation of renewable energy sources (RES). However standalone RES have been proven to be very expensive and unreliable in nature owing to the stochastic nature of the energy sources. Hybrid energy system is an excellent solution for electrification of areas where the grid extension is difficult and not economical. One of the main attribute of hybridising is to be able to optimally size each RES including storages with the aim of minimizing operation costs while efficiently and reliably responding to load demand. Hybrid RES emerges as a trend born out of the need to fully utilize and solve problems associated with the reliability of RES. This paper present a review of techniques used in recent optimal sizing of hybrid RES. It discusses several methodologies and criteria for optimization of hybrid RES. The recent trend in optimization in the field of hybrid RES shows that bio-inspired techniques may provide good optimization of system without extensive long weather data.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8240
Author(s):  
Wadim Strielkowski ◽  
Lubomír Civín ◽  
Elena Tarkhanova ◽  
Manuela Tvaronavičienė ◽  
Yelena Petrenko

The electrical power sector plays an important role in the economic growth and development of every country around the world. Total global demand for electric energy is growing both in developed and developing economies. The commitment to the decarbonization of economies, which would mean replacing fossil fuels with renewable energy sources (RES) as well as the electrification of transport and heating as a means to tackle global warming and dangerous climate change, would lead to a surge in electricity consumption worldwide. Hence, it appears reasonable that the electric power sector should embed the principles of sustainable development into its functioning and operation. In addition, events such as the recent European gas crisis that have emerged as a result of the massive deployment of renewables need to be studied and prevented. This review aims at assessing the role of the renewable energy in the sustainable development of the electrical power sector, focusing on the energy providers and consumers represented both by businesses and households that are gradually becoming prosumers on the market of electric energy. Furthermore, it also focuses on the impact of renewables on the utility side and their benefits for the grid. In addition, it identifies the major factors of the sustainable development of the electrical power sector.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 221 ◽  
Author(s):  
C. Anuradha ◽  
N. Chellammal ◽  
Md Saquib Maqsood ◽  
S. Vijayalakshmi

An efficient way of synthesizing a three port non-isolated converter from a single-ended primary inductor converter (SEPIC) is proposed in this paper. The primary SEPIC converter is split into a source cell and a load cell. Two such source cells are integrated through direct current (DC) link capacitors with a common load cell to generate a three-port SEPIC converter. The derived converter features single-stage power conversion with reduced structural complexity and bidirectional power flow capability. For bidirectional power flow, it incorporates a battery along with an auxiliary photovoltaic source. Mathematical analyses were carried out to describe the operating principles and design considerations. Experiments were performed on an in-house-built prototype three-port unidirectional converter, and the results are presented to validate the feasibility of the designed converter.


Sign in / Sign up

Export Citation Format

Share Document