scholarly journals Photocatalytic Degradation of Organic Pollutant using Reduced Graphene Oxide

A simple eco friendly preparation of reduced graphene oxide from graphene oxide using strawberry extract is reported. As prepared reduced graphene oxide were characterized by X-Ray Diffraction, UV-Vis spectroscopy, Scaning electron microscopy and degradation performane of MB. The reduced graphene oxide was effectively degradation of MB.

Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 666
Author(s):  
Xinchuan Fan ◽  
Yue Hu ◽  
Yijun Zhang ◽  
Jiachen Lu ◽  
Xiaofeng Chen ◽  
...  

Reduced graphene oxide–epoxy grafted poly(styrene-co-acrylate) composites (GESA) were prepared by anchoring different amount of epoxy modified poly(styrene-co-acrylate) (EPSA) onto reduced graphene oxide (rGO) sheets through π–π electrostatic attraction. The GESA composites were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The anti-corrosion properties of rGO/EPSA composites were evaluated by electro-chemical impedance spectroscopy (EIS) in hydroxyl-polyacrylate coating, and the results revealed that the corrosion rate was decreased from 3.509 × 10−1 to 1.394 × 10−6 mm/a.


2019 ◽  
Vol 10 ◽  
pp. 448-458 ◽  
Author(s):  
Md Rakibuddin ◽  
Haekyoung Kim

The visible light photocatalytic reduction of CO2 to fuel is crucial for the sustainable development of energy resources. In our present work, we report the synthesis of novel reduced graphene oxide (rGO)-supported C3N4 nanoflake (NF) and quantum dot (QD) hybrid materials (GCN) for visible light induced reduction of CO2. The C3N4 NFs and QDs are prepared by acid treatment of C3N4 nanosheets followed by ultrasonication and hydrothermal heating at 130–190 °C for 5−20 h. It is observed that hydrothermal exposure of acid-treated graphitic carbon nitride (g-C3N4) nanosheets at low temperature generated larger NFs, whereas QDs are formed at higher temperatures. The formation of GCN hybrid materials was confirmed by powder X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy (TEM), and UV–vis spectroscopy. High-resolution TEM images clearly show that C3N4 QDs (average diameter of 2–3 nm) and NFs (≈20–45 nm) are distributed on the rGO surface within the GCN hybrid material. Among the as-prepared GCN hybrid materials, GCN-5 QDs exhibit excellent CO2 reductive activity for the generation of formaldehyde, HCHO (10.3 mmol h−1 g−1). Therefore, utilization of metal-free carbon-based GCN hybrid materials could be very promising for CO2 photoreduction because of their excellent activity and environmental sustainability.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 488 ◽  
Author(s):  
Yu Hou ◽  
Jimei Qi ◽  
Jiwei Hu ◽  
Yiqiu Xiang ◽  
Ling Xin ◽  
...  

Mesoporous Mn-doped Fe nanoparticle-modified reduced graphene oxide (Mn-doped Fe/rGO) was prepared through a one-step co-precipitation method, which was then used to eliminate ethyl violet (EV) in wastewater. The prepared Mn-doped Fe/rGO was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy, energy dispersive spectroscopy, N2-sorption, small angle X-ray diffraction and superconducting quantum interference device. The Brunauer–Emmett–Teller specific surface area of Mn-doped Fe/rGO composites was 104.088 m2/g. The EV elimination by Mn-doped Fe/rGO was modeled and optimized by artificial intelligence (AI) models (i.e., radial basis function network, random forest, artificial neural network genetic algorithm (ANN-GA) and particle swarm optimization). Among these AI models, ANN-GA is considered as the best model for predicting the removal efficiency of EV by Mn-doped Fe/rGO. The evaluation of variables shows that dosage gives the maximum importance to Mn-doped Fe/rGO removal of EV. The experimental data were fitted to kinetics and adsorption isotherm models. The results indicated that the process of EV removal by Mn-doped Fe/rGO obeyed the pseudo-second-order kinetics model and Langmuir isotherm, and the maximum adsorption capacity was 1000.00 mg/g. This study provides a possibility for synthesis of Mn-doped Fe/rGO by co-precipitation as an excellent material for EV removal from the aqueous phase.


2020 ◽  
Vol 20 (7) ◽  
pp. 4035-4046
Author(s):  
Rengasamy Dhanabal ◽  
Dhanasekaran Naveena ◽  
Sivan Velmathi ◽  
Arumugam Chandra Bose

Using a simple solution based synthesis route, hexagonal MoO3 (h-MoO3) nanorods on reduced graphene oxide (RGO) sheets were prepared. The structure and morphology of resulting RGO-MoO3 nanocomposite were characterized using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The optical property was studied using UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectroscopy (PL). The RGO-MoO3 nanocomposites were used as an electrode for supercapacitor application and photocatalyst for photodegradation of methylene blue (MB) and rhodamine B (RhB) under visible light irradiation. We demonstrated that the RGO-MoO3 electrode is capable of delivering high specific capacitance of 134 F/g at current density of 1 A/g with outstanding cyclic stability for 2000 cycles. The RGOMoO3 photocatalyst degrades 95% of MB dye within 90 min, and a considerable recyclability up to 4 cycles was observed. The quenching effect of scavengers test confirms holes are main reactive species in the photocatalytic degradation of MB. Further, the charge transfer process between RGO and MoO3 was schematically demonstrated.


2020 ◽  
Vol 855 ◽  
pp. 160-165
Author(s):  
Deril Ristiani ◽  
Niken Sylvia Puspitasari ◽  
Retno Asih ◽  
Fahmi Astuti ◽  
Malik Anjelh Baqiya ◽  
...  

Na-doped reduced graphene oxide (Na-rGO) was prepared by wet mixing process of the reduced graphene oxide (rGO) in NaOH solution. The results showed that the rGO doped with Na ions can increase its magnetization approximately 2 times greater than that in rGO without doping. Saturation magnetization (Ms) for rGO and Na-rGO samples are 0.017 emu/g and 0.037 emu/g, respectively. The increasing value of magnetization is suggested to be due to defect presented in the Na-rGO samples. Both samples, rGO and Na-rGO, have the similar XRD (X-ray Diffraction) spectra that is marked by two characteristic diffraction peaks of rGO, which are associated with [002] and [10] planes, followed by the increasing inter-planar distance in Na-rGO samples which might be due to Na ions intercalation into rGO sheets, confirmed by the energy-dispersive X-ray (EDX) result revealing the presence of Na atoms in rGO.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1356 ◽  
Author(s):  
Xue Nie ◽  
Rui Zhang ◽  
Zheng Tang ◽  
Haiyan Wang ◽  
Peihong Deng ◽  
...  

In this paper, CeO2 nanoparticles were synthesized by the solvothermal method and dispersed uniformly in graphene oxide (GO) aqueous solution by ultrasonication. The homogeneous CeO2-GO dispersion was coated on the surface of a glassy carbon electrode (GCE), and the CeO2/electrochemically reduced graphene oxide modified electrode (CeO2/ERGO/GCE) was obtained by potentiostatic reduction. The results of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) showed that CeO2 nanocrystals were uniformly coated by gossamer like ERGO nanosheets. The electrochemical behavior of vanillin on the CeO2/ERGO/GCE was studied by cyclic voltammetry (CV). It was found that the CeO2/ERGO/GCE has high electrocatalytic activity and good electrochemical performance for vanillin oxidation. Using the second derivative linear sweep voltammetry (SDLSV), the CeO2/ERGO/GCE provides a wide range of 0.04–20 µM and 20 µM–100 µM for vanillin detection, and the detection limit is estimated to be 0.01 µM after 120 s accumulation. This method has been successfully applied to the vanillin detection in some commercial foods.


2019 ◽  
Vol 1292 ◽  
pp. 012011 ◽  
Author(s):  
I Boukhoubza ◽  
M Khenfouch ◽  
M Achehboune ◽  
B M Mothudi ◽  
I Zorkani ◽  
...  

NANO ◽  
2020 ◽  
Vol 15 (08) ◽  
pp. 2050099
Author(s):  
Lijun Chen ◽  
Hongfeng Yin ◽  
Yuchao Zhang ◽  
Huidong Xie

Herein, KH-550 was used as surface modifier to prepare modified MnO2/reduced graphene oxide (M-MnO2/rGO) composite electrode materials by utilizing electrostatic interaction at low temperature and normal pressure. X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy were adopted to characterize the material’s phase, morphology, and valence state of elements. The electrochemical properties of the material were measured using a three-electrode system. The results indicate a decrease in the size of the modified MnO2 particles, and that they were uniformly distributed on the rGO sheets. The M-MnO2/rGO composite attained a specific capacitance of 326[Formula: see text]F[Formula: see text]g[Formula: see text] in a solution of 1[Formula: see text]mol[Formula: see text]L[Formula: see text] Na2SO4 at a current density of 0.5[Formula: see text]A[Formula: see text]g[Formula: see text]. The specific capacitance of the material was 92.4% after 1000 cycles. The electrostatic self-assembly method effectively solved the problem of reducing the cycling stability while improving the specific capacitance of the composite materials, and further improved the possibility of applying MnO2/rGO in the field of supercapacitors.


2018 ◽  
Vol 5 (8) ◽  
pp. 180613 ◽  
Author(s):  
Haijin Liu ◽  
Peiyao Li ◽  
Haokun Bai ◽  
Cuiwei Du ◽  
Dandan Wei ◽  
...  

Anatase TiO 2 with {001} facets is much more active than that with {101} facets, which has been verified via experiments and theoretical calculations. Graphene has garnered much attention since it was initially synthesized, due to its unique properties. In this study, reduced graphene oxide (RGO)/{001} faceted TiO 2 composites were fabricated via a solvothermal method. The composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectrophotometry, photoluminescence and Raman analysis. The results revealed that the graphene oxide was reduced during the preparation process of the {001} faceted TiO 2 , and combined with the surface of {001} TiO 2 . The photocatalytic activities of the composites were evaluated through the degradation of basic violet, under both white light ( λ > 390 nm) and visible light ( λ = 420 nm) irradiation. The results indicated that the photocatalytic activities of the {001} faceted TiO 2 were significantly improved following the incorporation of RGO, particularly under visible light irradiation. Theoretical calculations showed that the band structure of the {001} faceted TiO 2 was modified via graphene hybridization, where the separation of photoinduced electron–hole pairs was promoted; thus, the photocatalytic activity was enhanced.


NANO ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. 1650126 ◽  
Author(s):  
GuanHua Jin ◽  
Suqin Liu ◽  
Yaomin Li ◽  
Yang Guo ◽  
Zhiying Ding

Development of efficient electrocatalysts for the oxygen reduction reaction (ORR) remains a key issue for the commercialization of metal-air batteries. In this study, the novel structured Co3O4 nanoparticles-modified [Formula: see text]-MnO2 nanorods supported on reduced graphene oxide (Co3O4-MnO2/rGO) were synthesized with varying amounts of [Formula: see text]-MnO2 via a facile two-step hydrothermal method. The relationship between the physical properties and the electrochemical results was investigated using X-ray diffraction spectrum, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammograms, electrochemical impedance spectroscopy and rotating disk electrode. The as-prepared Co3O4–MnO2 nanohybrid exhibits enhanced catalytic activity for ORR under alkaline condition compared with MnO2/rGO and Co3O4/rGO. Furthermore, it mainly favors a direct 4e-reaction pathway for ORR, which is attributed to the well-designed structure, the synergistic effect between Co3O4 and [Formula: see text]-MnO2, and the covalent coupling between the Co3O4-MnO2 and reduced graphene oxide. The role of Co3O4 in Co3O4–MnO2 hybrid for catalyzing ORR also has been illustrated by varying the mass ratio of Co3O4 and MnO2, which reveals that the Co3O4–MnO2 with the ratio of 1:1 has better catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document