scholarly journals Removal of Baseline Wander from Electrocardiogram using Ensemble Empirical Mode Decomposition and Low Pass Filter

2019 ◽  
Vol 8 (4) ◽  
pp. 2771-2774

Electrocardiogram (ECG) is a graphical visualization of the electrical activity of human heart. The biomedical signal, such as ECG, has a major issue of separating the pure signal from artifacts due to baseline wander (BW), electrode artifacts, muscle artifacts, and power-line interference. Reduction of these artifacts is vital for clinical purposes for diagnosis and interpretation of the human heart condition. This paper presents removal of BW from ECG using ensemble empirical mode decomposition (EMD) with multiband filtering approach. A comparative performance analysis of EMD and ensemble EMD for synthetic as well as real BW on normal sinus rhythm and arrhythmia ECG signal are presented. This method can remove the BW in different inherent signal to noise ratio (SNR) including negative and positive as well. This method shows that quantitative and qualitative results with miniscule signal distortion via experiments on several ECG records.

Author(s):  
Y Xu ◽  
B Liu ◽  
J Liu ◽  
S Riemenschneider

Empirical mode decomposition (EMD) is a powerful tool for analysis of non-stationary and nonlinear signals, and has drawn significant attention in various engineering application areas. This paper presents a finite element-based EMD method for two-dimensional data analysis. Specifically, we represent the local mean surface of the data, a key step in EMD, as a linear combination of a set of two-dimensional linear basis functions smoothed with bi-cubic spline interpolation. The coefficients of the basis functions in the linear combination are obtained from the local extrema of the data using a generalized low-pass filter. By taking advantage of the principle of finite-element analysis, we develop a fast algorithm for implementation of the EMD. The proposed method provides an effective approach to overcome several challenging difficulties in extending the original one-dimensional EMD to the two-dimensional EMD. Numerical experiments using both simulated and practical texture images show that the proposed method works well.


2016 ◽  
Vol 15 (02) ◽  
pp. 1650017 ◽  
Author(s):  
Mohammad Shahbakhti ◽  
Hamed Bagheri ◽  
Babak Shekarchi ◽  
Somayeh Mohammadi ◽  
Mohsen Naji

Electrocardiogram (ECG) signals might be affected by various artifacts and noises that have biological and external sources. Baseline wander (BW) is a low-frequency artifact that may be caused by breathing, body movements and loose sensor contact. In this paper, a novel method based on empirical mode decomposition (EMD) for removal of baseline noise from ECG is presented. When compared to other EMD-based methods, the novelty of this research is to reach the optimized number of decomposed levels for ECG BW de-noising using mean power frequency (MPF), while the reduction of processing time is considered. To evaluate the performance of the proposed method, a fifth-order Butterworth high pass filtering (BHPF) with cut-off frequency at 0.5[Formula: see text]Hz and wavelet approach are applied. Three performance indices, signal-to-noise ratio (SNR), mean square error (MSE) and correlation coefficient (CC), between pure and filtered signals have been utilized for qualification of presented techniques. Results suggest that the EMD-based method outperforms the other filtering method.


Author(s):  
Rajesh Birok, Et. al.

Electrocardiogram (ECG) is a documentation of the electrical activities of the heart. It is used to identify a number of cardiac faults such as arrhythmias, AF etc.  Quite often the ECG gets corrupted by various kinds of artifacts, thus in order to gain correct information from them, they must first be denoised. This paper presents a novel approach for the filtering of low frequency artifacts of ECG signals by using Complete Ensemble Empirical Mode Decomposition (CEED) and Neural Networks, which removes most of the constituent noise while assuring no loss of information in terms of the morphology of the ECG signal. The contribution of the method lies in the fact that it combines the advantages of both EEMD and ANN. The use of CEEMD ensures that the Neural Network does not get over fitted. It also significantly helps in building better predictors at individual frequency levels. The proposed method is compared with other state-of-the-art methods in terms of Mean Square Error (MSE), Signal to Noise Ratio (SNR) and Correlation Coefficient. The results show that the proposed method has better performance as compared to other state-of-the-art methods for low frequency artifacts removal from EEG.  


Author(s):  
Wei Li ◽  
Wei Hu ◽  
Kun Hu ◽  
Qiang Qin

The Surface electromyography (sEMG) signal is a kind of electrical signal which generated by human muscles during contraction. It is prone to being affected by noise because of its small amplitude, so it is necessary to remove the noise in its original signal with an appropriate algorithm. Based on the traditional signal denoising indicators, a new complex indicator r has been proposed in this paper which combines three different indicator parameters, that is, Signal to Noise Ratio (SNR), correlation coefficient (R), and standard error (SE). At the same time, an adaptive ensemble empirical mode decomposition (EEMD) method named AIO-EEMD which based on the proposed indicator is represented later. To verify the effective of the proposed algorithm, an electromyography signal acquisition circuit is designed firstly for collecting the original sEMG signal. Then, the denosing performance from the designed method is been compared with empirical mode decomposition (EMD) method and wavelet transform noise reduction method, respectively. The experiment results shown that the designed algorithm can not only automatically get the numbers of the reconstructed signal numbers, but also obtain the best reduction performance.


Author(s):  
MD Erfanul Alam ◽  
Biswanath Samanta

Electroencephalography measures the sum of the post-synaptic potentials generated by many neurons having the same radial orientation with respect to the scalp. The electroen-cephalographic signals (EEG) are weak and often contaminated with different artifacts that have biological and external sources. Reliable pre-processing of the noisy, non-linear, and non-stationary brain activity signals is needed for successful extraction of characteristic features in motor imagery based brain-computer interface (MI-BCI). In this work, a signal processing technique, namely, empirical mode decomposition (EMD), has been proposed for processing EEG signals acquired from volunteer subjects for characterization and identification of motor imagery (MI) activities. EMD has been used for removal of artifacts like electrooculography (EOG) that strongly appears in frontal electrodes of EEG and the power line noise that is mainly produced by the fluorescent light. The performance of EMD has been compared with two extensions, ensemble empirical mode decomposition (EEMD) and multivariate empirical mode decomposition (MEMD)using signal to noise ratio (SNR). The maximum SNR values found for EMD, EEMD and MEMD are 4.30, 7.64 and 10.62 respectively for the EEG signals considered.


Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 11 ◽  
Author(s):  
Guohui Li ◽  
Qianru Guan ◽  
Hong Yang

Owing to the problems that imperfect decomposition process of empirical mode decomposition (EMD) denoising algorithm and poor self-adaptability, it will be extremely difficult to reduce the noise of signal. In this paper, a noise reduction method of underwater acoustic signal denoising based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), effort-to-compress complexity (ETC), refined composite multiscale dispersion entropy (RCMDE) and wavelet threshold denoising is proposed. Firstly, the original signal is decomposed into several IMFs by CEEMDAN and noise IMFs can be identified according to the ETC of IMFs. Then, calculating the RCMDE of remaining IMFs, these IMFs are divided into three kinds of IMFs by RCMDE, namely noise-dominant IMFs, real signal-dominant IMFs, real IMFs. Finally, noise IMFs are removed, wavelet soft threshold denoising is applied to noise-dominant IMFs and real signal-dominant IMFs. The denoised signal can be obtained by combining the real IMFs with the denoised IMFs after wavelet soft threshold denoising. Chaotic signals with different signal-to-noise ratio (SNR) are used for denoising experiments by comparing with EMD_MSE_WSTD and EEMD_DE_WSTD, it shows that the proposed algorithm has higher SNR and smaller root mean square error (RMSE). In order to further verify the effectiveness of the proposed method, which is applied to noise reduction of real underwater acoustic signals. The results show that the denoised underwater acoustic signals not only eliminate noise interference also restore the topological structure of the chaotic attractors more clearly, which lays a foundation for the further processing of underwater acoustic signals.


2020 ◽  
Vol 9 (2) ◽  
pp. 443-450
Author(s):  
Yuan Li ◽  
Song Gao ◽  
Saimin Zhang ◽  
Hu He ◽  
Pengfei Xian ◽  
...  

Abstract. The grounded electrical source airborne transient electromagnetic (GREATEM) system is an important method for obtaining subsurface conductivity distribution as well as outstanding detection efficiency and easy flight control. However, there are the superposition of desired signals and various noises for the GREATEM signal. The baseline wander caused by the receiving coil motion always exists in the process of data acquisition and affects measurement results. The baseline wander is one of the main noise sources, which has its own characteristics such as being low frequency, large amplitude, non-periodic, and non-stationary and so on. Consequently, it is important to correct the GREATEM signal for an inversion explanation. In this paper, we propose improving the method of ensemble empirical mode decomposition (EEMD) by adaptive filtering (EEMD-AF) based on EEMD to suppress baseline wander. Firstly, the EEMD-AF method will decompose the electromagnetic signal into multi-stage intrinsic mode function (IMF) components. Subsequently, the adaptive filter will process higher-index IMF components containing the baseline wander. Lastly, the de-noised signal will be reconstructed. To examine the performance of our introduced method, we processed the simulated and field signal containing the baseline wander by different methods. Through the evaluation of the signal-to-noise ratio (SNR) and mean-square error (MSE), the result indicates that the signal using the EEMD-AF method can get a higher SNR and lower MSE. Comparing correctional data using the EEMD-AF and the wavelet-based method in the anomaly curve profile images of the response signal, it is proved that the EEMD-AF method is practical and effective for the suppression of the baseline wander in the GREATEM signal.


2009 ◽  
Vol 01 (04) ◽  
pp. 561-571 ◽  
Author(s):  
CHAO HUANG ◽  
LIHUA YANG ◽  
YANG WANG

Lin et al. propose the iterative Toeplitz filters algorithm as an alternative iterative algorithm for Empirical Mode Decomposition (EMD). In this alternative algorithm, the average of the upper and lower envelopes is replaced by certain "moving average" obtained through a low-pass filter. Performing the traditional sifting algorithm with such moving averages is equivalent to iterating certain convolution filters (finite length Toeplitz filters). This paper studies the convergence of this algorithm for signals of continuous variables, and proves that the limit function of this iterative algorithm is an ideal high-pass filtering process.


Sign in / Sign up

Export Citation Format

Share Document